搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缓冲层对量子阱二能级系统中电子子带间跃迁光吸收的影响

李群 屈媛 班士良

引用本文:
Citation:

缓冲层对量子阱二能级系统中电子子带间跃迁光吸收的影响

李群, 屈媛, 班士良

Buffer layer influence on light absorption of electron intersubband transition in binary energy level systems of quantum wells

Li Qun, Qu Yuan, Ban Shi-Liang
PDF
导出引用
  • 由于ZnO缓冲层对纤锌矿ZnO/MgxZn1-xO有限深单量子阱结构左垒的限制作用,导致阱和右垒的尺寸、Mg组分值等因素将影响系统中形成二能级.本文考虑内建电场、导带弯曲及材料掺杂对实际异质结势的影响,利用有限差分法数值求解Schrdinger方程,获得电子的本征能级和波函数,探讨ZnO缓冲层对此类量子阱形成二能级系统的尺寸效应及三元混晶效应的影响;利用费米黄金法则探讨缓冲层、左垒、阱及右垒宽度和三元混晶效应对此类量子阱电子子带间跃迁光吸收的影响.计算结果显示:对于加入ZnO缓冲层的ZnO/MgxZn1-xO有限深单量子阱二能级系统,左垒宽度临界值会随着阱宽和Mg组分值的增大而逐渐减小,随着右垒宽度和缓冲层厚度的增大而逐渐增大;量子阱中电子子带间跃迁光吸收峰会随着左垒、右垒尺寸以及Mg组分的增大发生蓝移,随着阱宽增大而发生红移.本文所得结果可为改善异质结器件的光电性能提供理论指导.
    Due to the restriction of the ZnO buffer layer on the left barrier in a wurtzite asymmetric ZnO/MgxZn1-xO single quantum well (QWs) structure with finite barriers, the other factors such as the size of the well and right barrier, and Mg component, etc. will influence the critical value of the left barrier width to form a binary level energy system. By adopting a finite difference method to solve the Schrdinger equation, the eigenstates and eigenenergies of electrons in a two-dimensional electron gas are obtained, and the influences of buffer layer ZnO, size and ternary mixed crystal effects on the formation of binary energy level system in QW are discussed. In our computation, the influences of energy band bending, material doping and built-in electric fields on a realistic heterostructure potential are considered. Furthermore, based on the Fermi's golden rule, the optical absorption coefficient of electronic intersubband transition in QW and the influences of buffer layer thickness, the widths of left barrier, well and right barrier and ternary mixed crystal effects are discussed. Our results indicate that the critical width of left barrier increases with the increases of the right barrier width and buffer layer thickness for a binary energy level system of ZnO/MgxZn1-xO single quantum well with a ZnO buffer layer on the left side. However, the critical width of left barrier decreases with the increase of well width and Mg component. Besides, the buffer layer thickness, the widths of left barrier, well and right barrier and ternary mixed crystal also affect the light absorption induced by the electronic intersubband transitions. The increases of Mg component, the widths of right barrier and left barrier will increase the absorption peak and produce its blue-shift. Whereas, increasing well width will reduce the absorption peak and produce its red-shift. The above conclusions are expected to give theoretical guidance in improving the opto-electronic properties of materials and devices made of these heterostructures.
      通信作者: 班士良, slban@imu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61274098,11304142)资助的课题.
      Corresponding author: Ban Shi-Liang, slban@imu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274098, 11304142).
    [1]

    Yumak A, Yahsi U, Petkova P, Boubaker K 2016 Mater. Lett. 164 89

    [2]

    Gu Z, Ban S L 2014 Acta Phys. Sin. 63 107301 (in Chinese)[谷卓, 班士良2014物理学报63 107301]

    [3]

    Sharma A K, Narayan J, Muth J F, Teng C W, Jin C, Kvit A, Kolbas R M, Holland O W 1999 Appl. Phys. Lett. 75 3327

    [4]

    Han S K, Lee H S, Kim D Y, Hong S K, Ahn B J, Song J H, Ieong M, Lee J H, Lee J Y, Yao T 2015 J. Alloy. Compd. 623 1

    [5]

    Sonawane B K, Bhole M P, Patil D S 2009 Mater. Sci. Semicond. Process. 12 212

    [6]

    Schmidt-Grund R, Carstens A, Rheinlnder B, Spemann D, Hochmut H, Zimmermann G, Lorenz M, Grundmann M, Herzinger C M, Schubert M 2006 J. Appl. Phys. 99 123701

    [7]

    Bundesmann C, Rahm A, Lorenz M, Grundmann M, Schubert M 2006 J. Appl. Phys. 99 113504

    [8]

    Zippel J, Heitsch S, Stlzel M, Mller A, Wenckstern H, Benndorf G, Lorenz M, Hochmuth H, Grundmann M 2010 J. Lumin. 130 520

    [9]

    Zippel J, Lorenz M, Lange M, Stlzel M, Benndorf G, Grundmann M 2013 J. Cryst. Growth 364 81

    [10]

    Zhao K L, Chen G P, Li B S, Shen A D 2014 Appl. Phys. Lett. 104 212104

    [11]

    Bagnall D M, Chen Y F, Zhu Z, Yao T, Shen M Y, Goto T 1998 Appl. Phys. Lett. 73 1038

    [12]

    Look D C 2001 Mater. Sci. Eng. B 80 383

    [13]

    Berland K, Stattin M, Farivar R, Sultan D M S, Hyldgaard P, Larsson A, Wang S M, Andersson T G 2010 Appl. Phys. Lett. 97 043507

    [14]

    Ohtani K, Belmoubarik M, Ohno H 2009 J. Cryst. Growth 311 2176

    [15]

    Zhu J, Ban S L, Ha S H 2013 Superlattices Microstruct. 56 92

    [16]

    Zhao K L, Chen G P, Hernandez J, Tamargo M C, Shen A 2015 J. Cryst. Growth 425 221

    [17]

    Li S M, Kwon B J, Kwack H S, Jin L H, Cho Y H, Park Y S, Han M S, Park Y S 2010 J. Appl. Phys. 107 033513

    [18]

    Su S C, Lu Y M, Zhang Z Z, Shan C X, Yao B, Li B H, Shen D Z, Zhang J Y, Zhao D X, Fan X W 2008 Appl. Surf. Sci. 254 7303

    [19]

    Schleife A, Rdl C, Furthmller J, Bechstedt F 2011 New J. Phys. 13 085012

    [20]

    Lpkowski S P, Teisseyre H, Suski T, Perlin P, Grandjean N, Massies J 2001 Appl. Phys. Lett. 79 1483

    [21]

    Ha S H, Ban S L 2007 J. Inner Mongolia Univ. (Nat. Sci. Ed.) 38 272(in Chinese)[哈斯花, 班士良2007内蒙古大学学报(自然科学版) 38 272]

    [22]

    Chi Y M, Shi J J 2008 J. Lumin. 128 1836

  • [1]

    Yumak A, Yahsi U, Petkova P, Boubaker K 2016 Mater. Lett. 164 89

    [2]

    Gu Z, Ban S L 2014 Acta Phys. Sin. 63 107301 (in Chinese)[谷卓, 班士良2014物理学报63 107301]

    [3]

    Sharma A K, Narayan J, Muth J F, Teng C W, Jin C, Kvit A, Kolbas R M, Holland O W 1999 Appl. Phys. Lett. 75 3327

    [4]

    Han S K, Lee H S, Kim D Y, Hong S K, Ahn B J, Song J H, Ieong M, Lee J H, Lee J Y, Yao T 2015 J. Alloy. Compd. 623 1

    [5]

    Sonawane B K, Bhole M P, Patil D S 2009 Mater. Sci. Semicond. Process. 12 212

    [6]

    Schmidt-Grund R, Carstens A, Rheinlnder B, Spemann D, Hochmut H, Zimmermann G, Lorenz M, Grundmann M, Herzinger C M, Schubert M 2006 J. Appl. Phys. 99 123701

    [7]

    Bundesmann C, Rahm A, Lorenz M, Grundmann M, Schubert M 2006 J. Appl. Phys. 99 113504

    [8]

    Zippel J, Heitsch S, Stlzel M, Mller A, Wenckstern H, Benndorf G, Lorenz M, Hochmuth H, Grundmann M 2010 J. Lumin. 130 520

    [9]

    Zippel J, Lorenz M, Lange M, Stlzel M, Benndorf G, Grundmann M 2013 J. Cryst. Growth 364 81

    [10]

    Zhao K L, Chen G P, Li B S, Shen A D 2014 Appl. Phys. Lett. 104 212104

    [11]

    Bagnall D M, Chen Y F, Zhu Z, Yao T, Shen M Y, Goto T 1998 Appl. Phys. Lett. 73 1038

    [12]

    Look D C 2001 Mater. Sci. Eng. B 80 383

    [13]

    Berland K, Stattin M, Farivar R, Sultan D M S, Hyldgaard P, Larsson A, Wang S M, Andersson T G 2010 Appl. Phys. Lett. 97 043507

    [14]

    Ohtani K, Belmoubarik M, Ohno H 2009 J. Cryst. Growth 311 2176

    [15]

    Zhu J, Ban S L, Ha S H 2013 Superlattices Microstruct. 56 92

    [16]

    Zhao K L, Chen G P, Hernandez J, Tamargo M C, Shen A 2015 J. Cryst. Growth 425 221

    [17]

    Li S M, Kwon B J, Kwack H S, Jin L H, Cho Y H, Park Y S, Han M S, Park Y S 2010 J. Appl. Phys. 107 033513

    [18]

    Su S C, Lu Y M, Zhang Z Z, Shan C X, Yao B, Li B H, Shen D Z, Zhang J Y, Zhao D X, Fan X W 2008 Appl. Surf. Sci. 254 7303

    [19]

    Schleife A, Rdl C, Furthmller J, Bechstedt F 2011 New J. Phys. 13 085012

    [20]

    Lpkowski S P, Teisseyre H, Suski T, Perlin P, Grandjean N, Massies J 2001 Appl. Phys. Lett. 79 1483

    [21]

    Ha S H, Ban S L 2007 J. Inner Mongolia Univ. (Nat. Sci. Ed.) 38 272(in Chinese)[哈斯花, 班士良2007内蒙古大学学报(自然科学版) 38 272]

    [22]

    Chi Y M, Shi J J 2008 J. Lumin. 128 1836

  • [1] 刘洁, 王禄, 孙令, 王文奇, 吴海燕, 江洋, 马紫光, 王文新, 贾海强, 陈弘. 基于p-n结中反常光电转换现象的新型带间跃迁量子阱红外探测器. 物理学报, 2018, 67(12): 128101. doi: 10.7498/aps.67.20180588
    [2] 万亚州, 高明, 李勇, 郭海波, 李拥华, 徐飞, 马忠权. 掺杂非晶氧化硅薄膜中三元化合态与电子结构的第一性原理计算. 物理学报, 2017, 66(18): 188802. doi: 10.7498/aps.66.188802
    [3] 程静云, 康朝阳, 宗海涛, 曹国华, 李明. Ag缓冲层对ZnO:Al薄膜结构与光电性能的改善. 物理学报, 2017, 66(2): 027702. doi: 10.7498/aps.66.027702
    [4] 谷卓, 班士良. 纤锌矿结构ZnO/MgxZn1-xO量子阱中带间光吸收的尺寸效应和三元混晶效应. 物理学报, 2014, 63(10): 107301. doi: 10.7498/aps.63.107301
    [5] 包锦, 闫翠玲, 闫祖威. 三元混晶四层系统的表面和界面声子极化激元. 物理学报, 2014, 63(10): 107105. doi: 10.7498/aps.63.107105
    [6] 刘伯飞, 白立沙, 张德坤, 魏长春, 孙建, 侯国付, 赵颖, 张晓丹. 非晶硅界面缓冲层对非晶硅锗电池性能的影响. 物理学报, 2013, 62(24): 248801. doi: 10.7498/aps.62.248801
    [7] 李明, 张荣, 刘斌, 傅德颐, 赵传阵, 谢自力, 修向前, 郑有炓. AlGaN/GaN量子阱中子带的Rashba自旋劈裂和子带间自旋轨道耦合作用研究. 物理学报, 2012, 61(2): 027103. doi: 10.7498/aps.61.027103
    [8] 秦杰明, 王皓, 曾繁明, 李建利, 万玉春, 刘景和. 高温高压下MgxZn1-xO固溶体的制备. 物理学报, 2010, 59(12): 8910-8914. doi: 10.7498/aps.59.8910
    [9] 屈媛, 班士良. 纤锌矿氮化物量子阱中光学声子模的三元混晶效应. 物理学报, 2010, 59(7): 4863-4873. doi: 10.7498/aps.59.4863
    [10] 魏玮, 刘明, 曲盛薇, 张庆瑜. Ti缓冲层及退火处理对Si(111)基片上生长的ZnO薄膜结构和发光特性的影响. 物理学报, 2009, 58(8): 5736-5743. doi: 10.7498/aps.58.5736
    [11] 雷双瑛, 沈 波, 张国义. AlxGa1-xN/GaN双量子阱的结构和掺杂浓度对子带间跃迁波长和吸收系数的影响. 物理学报, 2008, 57(4): 2386-2391. doi: 10.7498/aps.57.2386
    [12] 李 晖, 谢二庆, 张洪亮, 潘孝军, 张永哲. 火焰喷雾法合成ZnO和MgxZn1-xO纳米颗粒的光学性能研究. 物理学报, 2007, 56(6): 3584-3588. doi: 10.7498/aps.56.3584
    [13] 华 佳, 张 舒, 程建春. 三元周期结构声禁带形成机理. 物理学报, 2005, 54(3): 1261-1266. doi: 10.7498/aps.54.1261
    [14] 李良新, 胡勇华. 可用于红外探测器的自组织量子线及其带间和子带间光学跃迁. 物理学报, 2005, 54(2): 848-856. doi: 10.7498/aps.54.848
    [15] 徐至中. 势垒区δ掺杂量子阱Ge0.3Si0.7/Si/Ge0.3Si0.7的子带间跃迁光吸收系数. 物理学报, 1996, 45(10): 1762-1770. doi: 10.7498/aps.45.1762
    [16] 杨永宏, 邢定钰, 龚昌德. 二维无序电子系统子带间的杂质散射效应. 物理学报, 1993, 42(1): 106-113. doi: 10.7498/aps.42.106
    [17] 潘少华, 陈正豪, 冯思民, 崔大复, 杨国桢. GaAs/AlxGa1-xAs超晶格子带间光跃迁的研究. 物理学报, 1990, 39(12): 2011-2018. doi: 10.7498/aps.39.2011
    [18] 方晓明, 沈学础, 侯宏启, 冯巍, 周均铭. In0.15Ga0.85As—GaAs应力层多量子阱中束缚子带—连续带跃迁. 物理学报, 1990, 39(4): 627-631. doi: 10.7498/aps.39.627
    [19] 傅英, 徐文兰. Ge1-xSix混晶声子谱. 物理学报, 1988, 37(1): 162-166. doi: 10.7498/aps.37.162
    [20] 陆卫;叶红娟;陶凤翔;沈学础;方志烈;劳浦东. 液相外延GaAs_(1-x)_P_x_混晶的光学声子,等离子体激元和LO声子-等离子激元耦合模. 物理学报, 1987, 36(8): 965-973. doi: 10.7498/aps.36.965
计量
  • 文章访问数:  6284
  • PDF下载量:  181
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-22
  • 修回日期:  2017-01-09
  • 刊出日期:  2017-04-05

/

返回文章
返回