-
实验发现p-n结中局域载流子具有极高抽取效率,同时伴随着吸收系数的大幅度增加.本文报道上述现象的发现和验证过程,以及基于此现象的新型带间跃迁量子阱红外探测器(interband transition quantum well infrared detector,IQWIP)原型器件的性能.采用共振激发光致发光光谱技术,在InGaN量子阱、InGaAs量子阱、InAs量子点等多个材料体系中均观察到了在p-n结电场作用下的载流子高效逃逸现象,抽取效率分别为95%,87.5%,88%.利用含有InGaAs/GaAs多量子阱的PIN二极管,实验尝试了制备新型的IQWIP原型器件.在无表面减反射膜的实验条件下,利用仅100 nm的有效吸收厚度,实现了31%的外量子效率.基于这个数值推算得到量子阱的光吸收系数达到3.7104cm-1,该数值高于传统透射实验测量体材料和量子阱结果.此外,还利用InAsSb/GaSb量子阱材料体系进行了2 m以上波长红外探测的探索.利用上述现象,有望在提高现有器件性能的同时开发出新颖的光-电转换器件.Recently, high localized carrier extraction efficiency and enhanced absorption coefficient were observed in low-dimensional semiconductor within a p-n junction. In this work, we report the discovery and verification of the phenomenon, and the performance of the first photon detector based on the interband transition of strained InGaAs/GaAs quantum wells (QWs). By introducing the resonant excitation photoluminescence, the same phenomena are observed in several different material systems. More than 95% of the photoexcited carriers escape from InGaN/GaN QWs, and 87.3% in InGaAs/GaAs QWs and 88% in InAs/GaAs quantum dots are observed. The external quantum efficiency of the device is measured to be 31% by using an absorption layer with only 100 nm effective thickness in the case without an anti-reflection layer. Using such a high value of quantum efficiency, an absorption coefficient of 3.7104 cm-1 is calculated, which is obviously larger than previously reported values. The results here demonstrate the possibility of fabricating high-performance and low-cost infrared photon detectors.
-
Keywords:
- interband transition /
- p-n junctions /
- carrier transportation /
- photoluminescence
[1] Goetzberger A, Hebling C, Schock H W 2003 Mater. Sci. Engineer. R:Rep. 40 1
[2] Jenny D, Loferski J, Rappaport P 1956 Phys. Rev. 101 1208
[3] Chapin D M, Fuller C, Pearson G 1954 J. Appl. Phys. 25 676
[4] Gloeckler M, Sankin I, Zhao Z 2013 IEEE J. Photovolt. 3 1389
[5] Chirilǎ A, Buecheler S, Pianezzi F, Bloesch P, Gretener C, Uhl A R, Fella C, Kranz L, Perrenoud J, Seyrling S 2011 Nat. Mater. 10 857
[6] Rogalski A 2005 Rep. Prog. Phys. 68 2267
[7] Callewaert F, Hoang A, Razeghi M 2014 Appl. Phys. Lett. 104 053508
[8] Liu S T, Quan Z J, Wang L 2017 Chin. Phys. B 26 038104
[9] Nelson J 2003 The Physics of Solar Cells (London:World Scientific Publishing Company) pp19-37
[10] Rogalski A 2010 Infrared Detectors (Florida:CRC Press) pp295-338
[11] Basu P K 1997 Theory of Optical Processes in Semiconductors:Bulk and Microstructures (Vol. 4) (Oxford:Clarendon Press) pp80-122
[12] Dahal R, Pantha B, Li J, Lin J, Jiang H 2009 Appl. Phys. Lett. 94 063505
[13] Grundmann M 2015 The Physics of Semiconductors:An Introduction Including Nanophysics and Applications (Heidelberg:Springer)
[14] Qiu W, Hu W, Lin C, Chen X, Lu W 2016 Opt. Lett. 41 828
[15] Bai Z Z, Xu Z C, Zhou Y, Yao H C, Chen H L, Chen J X, Ding R J, He L 2015 J. Infrared Millim. Wave 34 716 (in Chinese)[白治中, 徐志成, 周易, 姚华城, 陈洪雷, 陈建新, 丁瑞军, 何力 2015 红外与毫米波学报 34 716]
[16] Rogalski A, Antoszewski J, Faraone L 2009 J. Appl. Phys. 105 091101
[17] Hu W D, Liang J, Yue F Y, Chen X S, Lu W 2016 J. Infrared Millim. Wave 35 25 (in Chinese)[胡伟达, 梁健, 越方禹, 陈效双, 陆卫 2016 红外与毫米波学报 35 25]
[18] Liu D, Lin C, Zhou S, Hu X 2016 J. Electron. Mater. 45 2802
[19] Ye Z, Zhang P, Li Y, Chen Y, Zhou S, Huang Y, Sun C, Lin C, Hu X, Ding R 2014 Opt. Quantum Electron. 46 1283
[20] Rogalski A 2003 Prog. Quantum Electron. 27 59
[21] Maimon S, Wicks G 2006 Appl. Phys. Lett. 89 151109
[22] Chakrabarti S, Stiff-Roberts A, Bhattacharya P, Gunapala S, Bandara S, Rafol S, Kennerly S 2004 IEEE Photon. Technol. Lett. 16 1361
[23] Freundlich A, Lombez L, Sugiyama M 2016 Proc. SPIE 9743 974301
[24] Rogalski A 2003 J. Appl. Phys. 93 4355
[25] Levine B 1993 J. Appl. Phys. 74 R1
[26] Ridley B 1991 Rep. Prog. Phys. 54 169
[27] Luque A, Mart A 2011 Nat. Photon. 5 137
[28] Xu Z Y, Lu Z D, Yang X, Yuan Z, Zheng B, Xu J, Ge W, Wang Y, Wang J, Chang L L 1996 Phys. Rev. B 54 11528
[29] Casey Jr H, Sell D, Wecht K 1975 J. Appl. Phys. 46 250
[30] Green M A 2008 Solar Energy Materials and Solar Cells 92 1305
[31] Mooney P, LeGoues F, Tersoff J, Chu J 1994 J. Appl. Phys. 75 3968
[32] Jain S, Willander M, Maes H 1996 Semicond. Sci. Technol. 11 641
[33] Dunstan D, Young S, Dixon R 1991 J. Appl. Phys. 70 3038
[34] Chatterjee S, Ell C, Mosor S, Khitrova G, Gibbs H M 2004 Phys. Rev. Lett. 92 067402
[35] Kaindl R A, Carnahan M A, Hagele D, Lovenich R, Chemla D S 2003 Nature 423 734
[36] Wang W, Wang L, Jiang Y, Ma Z, Sun L, Liu J, Sun Q, Zhao B, Wang W, Liu W, Jia H, Chen H 2016 Chin. Phys. B 25 097307
[37] Wang W Q 2017 Ph. D. Dissertation (Beijing:University of Chinese Academy of Sciences) (in Chinese)[王文奇 2017 博士学位论文 (北京:中国科学院大学)]
[38] Li T, Bartolo R E, Dagenais M 2013 Appl. Phys. Lett. 103 141113
[39] Antoln E, Marti A, Farmer C, Linares P, Hernndez E, Snchez A, Ben T, Molina S, Stanley C, Luque A 2010 J. Appl. Phys. 108 064513
[40] Kapteyn C, Heinrichsdorff F, Stier O, Heitz R, Grundmann M, Zakharov N, Bimberg D, Werner P 1999 Phys. Rev. B 60 14265
[41] Heitz R, Veit M, Ledentsov N N, Hoffmann A, Bimberg D, Ustinov V M, Kop'ev P S, Alferov Z I 1997 Phys. Rev. B 56 10435
[42] Harrison J, Hauser J 1976 J. Appl. Phys. 47 292
[43] Luque A, Mellor A, Ramiro I, Antoln E, Tobas I, Mart A 2013 Solar Energy Materials and Solar Cells 115 138
[44] Mellor A, Luque A, Tobas I, Mart A 2014 Adv. Funct. Mater. 24 339
[45] Sturge M 1962 Phys. Rev. 127 768
[46] Elliott R 1957 Phys. Rev. 108 1384
[47] Sun Q L, Wang L, Jiang Y, Ma Z G, Wang W Q, Sun L, Wang W X, Jia H Q, Zhou J M, Chen H 2016 Chin. Phys. Lett. 33 106801
[48] Wu H Y, Ma Z G, Jiang Y, Wang L, Yang H J, Li Y F, Zuo P, Jia H Q, Wang W X, Zhou J M, Liu W M, Chen H 2016 Chin. Phys. B 25 117803
[49] Liu J, Wang L, Jiang Y, Ma Z G, Wang W Q, Sun L, Jia H Q, Wang W X, Chen H 2017 J. Infrared Millim. Wave 36 129 (in Chinese)[刘洁, 王禄, 江洋, 马紫光, 王文奇, 孙令, 贾海强, 王文新, 陈弘 2017 红外与毫米波学报 36 129]
[50] Sun L, Wang L, Lu J L, Liu J, Fang J, Xie L L, Hao Z B, Jia H Q, Wang W X, Chen H 2018 Chin. Phys. B 27 047209
-
[1] Goetzberger A, Hebling C, Schock H W 2003 Mater. Sci. Engineer. R:Rep. 40 1
[2] Jenny D, Loferski J, Rappaport P 1956 Phys. Rev. 101 1208
[3] Chapin D M, Fuller C, Pearson G 1954 J. Appl. Phys. 25 676
[4] Gloeckler M, Sankin I, Zhao Z 2013 IEEE J. Photovolt. 3 1389
[5] Chirilǎ A, Buecheler S, Pianezzi F, Bloesch P, Gretener C, Uhl A R, Fella C, Kranz L, Perrenoud J, Seyrling S 2011 Nat. Mater. 10 857
[6] Rogalski A 2005 Rep. Prog. Phys. 68 2267
[7] Callewaert F, Hoang A, Razeghi M 2014 Appl. Phys. Lett. 104 053508
[8] Liu S T, Quan Z J, Wang L 2017 Chin. Phys. B 26 038104
[9] Nelson J 2003 The Physics of Solar Cells (London:World Scientific Publishing Company) pp19-37
[10] Rogalski A 2010 Infrared Detectors (Florida:CRC Press) pp295-338
[11] Basu P K 1997 Theory of Optical Processes in Semiconductors:Bulk and Microstructures (Vol. 4) (Oxford:Clarendon Press) pp80-122
[12] Dahal R, Pantha B, Li J, Lin J, Jiang H 2009 Appl. Phys. Lett. 94 063505
[13] Grundmann M 2015 The Physics of Semiconductors:An Introduction Including Nanophysics and Applications (Heidelberg:Springer)
[14] Qiu W, Hu W, Lin C, Chen X, Lu W 2016 Opt. Lett. 41 828
[15] Bai Z Z, Xu Z C, Zhou Y, Yao H C, Chen H L, Chen J X, Ding R J, He L 2015 J. Infrared Millim. Wave 34 716 (in Chinese)[白治中, 徐志成, 周易, 姚华城, 陈洪雷, 陈建新, 丁瑞军, 何力 2015 红外与毫米波学报 34 716]
[16] Rogalski A, Antoszewski J, Faraone L 2009 J. Appl. Phys. 105 091101
[17] Hu W D, Liang J, Yue F Y, Chen X S, Lu W 2016 J. Infrared Millim. Wave 35 25 (in Chinese)[胡伟达, 梁健, 越方禹, 陈效双, 陆卫 2016 红外与毫米波学报 35 25]
[18] Liu D, Lin C, Zhou S, Hu X 2016 J. Electron. Mater. 45 2802
[19] Ye Z, Zhang P, Li Y, Chen Y, Zhou S, Huang Y, Sun C, Lin C, Hu X, Ding R 2014 Opt. Quantum Electron. 46 1283
[20] Rogalski A 2003 Prog. Quantum Electron. 27 59
[21] Maimon S, Wicks G 2006 Appl. Phys. Lett. 89 151109
[22] Chakrabarti S, Stiff-Roberts A, Bhattacharya P, Gunapala S, Bandara S, Rafol S, Kennerly S 2004 IEEE Photon. Technol. Lett. 16 1361
[23] Freundlich A, Lombez L, Sugiyama M 2016 Proc. SPIE 9743 974301
[24] Rogalski A 2003 J. Appl. Phys. 93 4355
[25] Levine B 1993 J. Appl. Phys. 74 R1
[26] Ridley B 1991 Rep. Prog. Phys. 54 169
[27] Luque A, Mart A 2011 Nat. Photon. 5 137
[28] Xu Z Y, Lu Z D, Yang X, Yuan Z, Zheng B, Xu J, Ge W, Wang Y, Wang J, Chang L L 1996 Phys. Rev. B 54 11528
[29] Casey Jr H, Sell D, Wecht K 1975 J. Appl. Phys. 46 250
[30] Green M A 2008 Solar Energy Materials and Solar Cells 92 1305
[31] Mooney P, LeGoues F, Tersoff J, Chu J 1994 J. Appl. Phys. 75 3968
[32] Jain S, Willander M, Maes H 1996 Semicond. Sci. Technol. 11 641
[33] Dunstan D, Young S, Dixon R 1991 J. Appl. Phys. 70 3038
[34] Chatterjee S, Ell C, Mosor S, Khitrova G, Gibbs H M 2004 Phys. Rev. Lett. 92 067402
[35] Kaindl R A, Carnahan M A, Hagele D, Lovenich R, Chemla D S 2003 Nature 423 734
[36] Wang W, Wang L, Jiang Y, Ma Z, Sun L, Liu J, Sun Q, Zhao B, Wang W, Liu W, Jia H, Chen H 2016 Chin. Phys. B 25 097307
[37] Wang W Q 2017 Ph. D. Dissertation (Beijing:University of Chinese Academy of Sciences) (in Chinese)[王文奇 2017 博士学位论文 (北京:中国科学院大学)]
[38] Li T, Bartolo R E, Dagenais M 2013 Appl. Phys. Lett. 103 141113
[39] Antoln E, Marti A, Farmer C, Linares P, Hernndez E, Snchez A, Ben T, Molina S, Stanley C, Luque A 2010 J. Appl. Phys. 108 064513
[40] Kapteyn C, Heinrichsdorff F, Stier O, Heitz R, Grundmann M, Zakharov N, Bimberg D, Werner P 1999 Phys. Rev. B 60 14265
[41] Heitz R, Veit M, Ledentsov N N, Hoffmann A, Bimberg D, Ustinov V M, Kop'ev P S, Alferov Z I 1997 Phys. Rev. B 56 10435
[42] Harrison J, Hauser J 1976 J. Appl. Phys. 47 292
[43] Luque A, Mellor A, Ramiro I, Antoln E, Tobas I, Mart A 2013 Solar Energy Materials and Solar Cells 115 138
[44] Mellor A, Luque A, Tobas I, Mart A 2014 Adv. Funct. Mater. 24 339
[45] Sturge M 1962 Phys. Rev. 127 768
[46] Elliott R 1957 Phys. Rev. 108 1384
[47] Sun Q L, Wang L, Jiang Y, Ma Z G, Wang W Q, Sun L, Wang W X, Jia H Q, Zhou J M, Chen H 2016 Chin. Phys. Lett. 33 106801
[48] Wu H Y, Ma Z G, Jiang Y, Wang L, Yang H J, Li Y F, Zuo P, Jia H Q, Wang W X, Zhou J M, Liu W M, Chen H 2016 Chin. Phys. B 25 117803
[49] Liu J, Wang L, Jiang Y, Ma Z G, Wang W Q, Sun L, Jia H Q, Wang W X, Chen H 2017 J. Infrared Millim. Wave 36 129 (in Chinese)[刘洁, 王禄, 江洋, 马紫光, 王文奇, 孙令, 贾海强, 王文新, 陈弘 2017 红外与毫米波学报 36 129]
[50] Sun L, Wang L, Lu J L, Liu J, Fang J, Xie L L, Hao Z B, Jia H Q, Wang W X, Chen H 2018 Chin. Phys. B 27 047209
计量
- 文章访问数: 6369
- PDF下载量: 156
- 被引次数: 0