搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AlGaN/GaN量子阱中子带的Rashba自旋劈裂和子带间自旋轨道耦合作用研究

李明 张荣 刘斌 傅德颐 赵传阵 谢自力 修向前 郑有炓

引用本文:
Citation:

AlGaN/GaN量子阱中子带的Rashba自旋劈裂和子带间自旋轨道耦合作用研究

李明, 张荣, 刘斌, 傅德颐, 赵传阵, 谢自力, 修向前, 郑有炓

Study of Rashba spin splitting and intersubband spin-orbit coupling effect in AlGaN/GaN quantum wells

Li Ming, Zhang Rong, Liu Bin, Fu De-Yi, Zhao Chuan-Zhen, Xie Zhi-Li, Xiu Xiang-Qian, Zheng You-Dou
PDF
导出引用
  • 首先把本征值方程投影到导带的子空间中, 进而得到AlGaN/GaN量子阱中第一、二子带的Rashba自旋劈裂系数(1,2)和子带间自旋-轨道耦合系数12. 然后自恰求解薛定谔方程和泊松方程计算了不同栅压的量子阱中的1,2和12, 并分别讨论了量子阱阱层、左右异质结界面和垒层对它们的贡献. 结果表明可以通过栅压来调节自旋-轨道耦合系数, 子带间自旋轨道耦合系数12比Rashba自旋劈裂系数1,2小, 但基本在同一数量级.
    Rashba spin splitting coefficients for the first two subbands1,2 and intersubband spin-orbit coupling coefficient 12 are obtained by projecting the characteristic equation into the subspace of conduction band. Then Schrdinger and the Poisson equations are solved self-consistently to calculate1,2 and 12 under different gate voltages. Then contributions to the spin-orbit coupling coefficients from the well, the left and the right heterointerfaces and the left and the right barriers of the quantum well are discussed. Resulsts show that the spin-orbit coupling coefficient can be modulated by the gate voltage, and the intersubband spin-orbit coupling coefficients calculated here are a little smaller than the Rashba coefficients1,2, but they are basically of the same order.
    • 基金项目: 国家自然科学基金(批准号: 60990311, 60721063, 60906025, 60936004), 国家重点基础研究发展计划 (批准号: 2011CB301900), 国家高技术研究发展计划(批准号: 2009AA03A198), 江苏省自然科学基金(批准号: BK2008019, BK2009255, BK2010178)和南京大学扬州光电研究院研发基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos?60990311, 60721063, 60906025, 60936004), the State Key Development Program for Basic Research of China (Grant No?2011CB301900), the State Development Program for Research on Advanced technology of China (Grant No. 2009AA03A198), the Natural Science Foundation of Jiangsu Province (Grant Nos?BK2008019, BK2009255, BK2010178), and the Research Foundation for School of Yangzhou Photonic and Electronic research of Nanjing University.
    [1]

    Zutic I, fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323

    [2]

    Ikai Lo, Gau M H, Tsai J K, Chen Y L, Chang Z J, Wang W T, Chiang J C, Aggerstam T, Lourdudoss S 2007 Phys. Rev. B 75 245307

    [3]

    He X W, Shen B, Tang Y Q, Tang N, Yin C M, Xu F J, Yang Z J, Zhang G y, Chen Y H, Tang C G, Wang Z G 2007 Appl. Phys. Lett. 91 071912

    [4]

    Litvinov V I 2003 Phys. Rev. B 68 155314

    [5]

    Pfeffer P, Zawadzki W 1999 Phys. Rev. B 59 5312

    [6]

    Weber W, Ganichev S D, Danilov S N, Weiss D, Prettl W, Kvon N D, Bel’kov V V Golub L E, Cho H I, Lee J H 2005 Appl. Phys. Lett. 87 262106

    [7]

    Ganichev S D, Bel’kov V V, Golub L E, Ivchenko E L, Schneider P, Giglberger S, Eroms J, De Boeck J, Borghs G, Wegscheider W, Weiss D, Prettl W 2004 Phys. Rev. Lett. 92, 256601

    [8]

    Chao Z J, Gui Y S, Shu X Z, Dai N, Guo S L, Chu J H 2004 Acta Phys. Sin. 53 1186 (in Chinese) [仇志军, 桂永胜, 疏小舟, 戴宁, 郭少令, 禇君浩 2004 物理学报 53 1186]

    [9]

    Dresselhaus G 1955 Phys. Rev. 100 580

    [10]

    Bychkov Y A, Rashba E I 1984 J. Phys. C 17 6039

    [11]

    Sun H Z, Zhang P, Duang S Q, Zhao X G 2006 Chin. Phys. 15 3019

    [12]

    Yan Y Z, Hu L B 2010 Chin. Phys. B 19 047203

    [13]

    Li Y G, Li B Z 2005 Chin. Phys. 14 1021

    [14]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [15]

    Awschalom D, Loss D, Samarth N 2002 Semiconductor Spintronics and Quantum Computation (Berlin Springer) p1–3

    [16]

    Wang X H, An X T, Liu J J 2009 Chin. Phys. B 18 749

    [17]

    Sheng W, Wang Y, Zhuo G H 2007 Chin. Phys. 16 533

    [18]

    Tang N, Shen B, Zheng Z W, Liu J, Chen D J, Lu J, Zhang R, Shi Y, Zheng Y D, Gui Y S, Jiang C P, Qiu Z J, Guo S L, Chu J H, Hoshino K, Someya T, Arakawa Y 2003 J. Appl. Phys. 94 5420

    [19]

    Zheng Z W, Shen B, Jiang C P, Gui Y S, Someya Y, Zhang R, Shi Y, Zheng Y D, Guo S L, Chu J H, Arakawa Y 2003 J. Appl. Phys. 93 1651

    [20]

    Winkler R 2003 Spin-Orbit coupling effects in two-dimensional electron and hole systems (Berlin Springer) p77–86

    [21]

    Calsaverini R S, John Schliemann, Esmerindo Bernardes, Carlos Egues J, Daniel Loss 2008 Phys. Rev. B 78 155313

    [22]

    Esmerindo Bernardes, Calsaverini R S, Esmerindo Bernardes, Carlos Egues J, Daniel Loss 2007 Phys. Rev. Lett. 99 076603

    [23]

    Jaroslav Fabian, Alex Matos-Abiaguea, Christian Ertlera, Peter Stano, Igoř Zuti′c 2007 Acta Physica Slovaca 57 565

    [24]

    Chuang S L, Chang C S 1996 Phys. Rev. B 54 2491

    [25]

    Litvinov V I 2006 Appl. Phys. Lett. 89 222108

    [26]

    Li M, Zhang R, Zhang Z, Yan Y S, Liu B, Fu D, Zhao C J, Xie Z L, Xiu X Q, Zheng Y D 2010 Superlattice and Microstructure 47 522

    [27]

    Li M, Zhang R, Zhang Z, Yan W S, Liu B, Fu D, Zhao C Z, Xie Z L, Xiu X Q, Zheng Y D May 2009 13th International Workshop on Computational Electronics p230–233

    [28]

    Li M, Zhang R, Zhang Z, Liu B, Fu D Y, Zhao C Z, Xie Z L, Xiu X Q, Zheng Y D 2011 Phys. Status Solidi B 248 187

    [29]

    Tan I H, Snider G L, Chang L D, Hu E L 1990 J. Appl. Phys. 68 4071

    [30]

    Kumagai M, Chuang S L, Ando H 1998 Phys. Rev. B 57 15303

    [31]

    Suzuki M, Uenoyama T, Yanase A 1995 Phys. Rev. B 52 8132

    [32]

    Ikai Lo, Tsai J K, Yao W J, Ho P C, Tu L W, Chang T C, Elhamri S, Mitchel W C, Hsieh K Y, Huang J H, Huang H L, Tsai W C 2002 Phys. Rev. B 65 R161306

    [33]

    Tsubaki, Maeda N, Saitoh T, Kobayashi N 2002 Appl. Phys. Lett. 80 3126

    [34]

    Schmult, Manfra M J, Punnoose A, Sergent A M, Baldwin K W, Molnar R J 2006 Phys. Rev. B 74 033302

    [35]

    Koga T, Nitta J, Akazaki T, Takayanagi H 2002 Phys. Rev. Lett. 89 046801

  • [1]

    Zutic I, fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323

    [2]

    Ikai Lo, Gau M H, Tsai J K, Chen Y L, Chang Z J, Wang W T, Chiang J C, Aggerstam T, Lourdudoss S 2007 Phys. Rev. B 75 245307

    [3]

    He X W, Shen B, Tang Y Q, Tang N, Yin C M, Xu F J, Yang Z J, Zhang G y, Chen Y H, Tang C G, Wang Z G 2007 Appl. Phys. Lett. 91 071912

    [4]

    Litvinov V I 2003 Phys. Rev. B 68 155314

    [5]

    Pfeffer P, Zawadzki W 1999 Phys. Rev. B 59 5312

    [6]

    Weber W, Ganichev S D, Danilov S N, Weiss D, Prettl W, Kvon N D, Bel’kov V V Golub L E, Cho H I, Lee J H 2005 Appl. Phys. Lett. 87 262106

    [7]

    Ganichev S D, Bel’kov V V, Golub L E, Ivchenko E L, Schneider P, Giglberger S, Eroms J, De Boeck J, Borghs G, Wegscheider W, Weiss D, Prettl W 2004 Phys. Rev. Lett. 92, 256601

    [8]

    Chao Z J, Gui Y S, Shu X Z, Dai N, Guo S L, Chu J H 2004 Acta Phys. Sin. 53 1186 (in Chinese) [仇志军, 桂永胜, 疏小舟, 戴宁, 郭少令, 禇君浩 2004 物理学报 53 1186]

    [9]

    Dresselhaus G 1955 Phys. Rev. 100 580

    [10]

    Bychkov Y A, Rashba E I 1984 J. Phys. C 17 6039

    [11]

    Sun H Z, Zhang P, Duang S Q, Zhao X G 2006 Chin. Phys. 15 3019

    [12]

    Yan Y Z, Hu L B 2010 Chin. Phys. B 19 047203

    [13]

    Li Y G, Li B Z 2005 Chin. Phys. 14 1021

    [14]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [15]

    Awschalom D, Loss D, Samarth N 2002 Semiconductor Spintronics and Quantum Computation (Berlin Springer) p1–3

    [16]

    Wang X H, An X T, Liu J J 2009 Chin. Phys. B 18 749

    [17]

    Sheng W, Wang Y, Zhuo G H 2007 Chin. Phys. 16 533

    [18]

    Tang N, Shen B, Zheng Z W, Liu J, Chen D J, Lu J, Zhang R, Shi Y, Zheng Y D, Gui Y S, Jiang C P, Qiu Z J, Guo S L, Chu J H, Hoshino K, Someya T, Arakawa Y 2003 J. Appl. Phys. 94 5420

    [19]

    Zheng Z W, Shen B, Jiang C P, Gui Y S, Someya Y, Zhang R, Shi Y, Zheng Y D, Guo S L, Chu J H, Arakawa Y 2003 J. Appl. Phys. 93 1651

    [20]

    Winkler R 2003 Spin-Orbit coupling effects in two-dimensional electron and hole systems (Berlin Springer) p77–86

    [21]

    Calsaverini R S, John Schliemann, Esmerindo Bernardes, Carlos Egues J, Daniel Loss 2008 Phys. Rev. B 78 155313

    [22]

    Esmerindo Bernardes, Calsaverini R S, Esmerindo Bernardes, Carlos Egues J, Daniel Loss 2007 Phys. Rev. Lett. 99 076603

    [23]

    Jaroslav Fabian, Alex Matos-Abiaguea, Christian Ertlera, Peter Stano, Igoř Zuti′c 2007 Acta Physica Slovaca 57 565

    [24]

    Chuang S L, Chang C S 1996 Phys. Rev. B 54 2491

    [25]

    Litvinov V I 2006 Appl. Phys. Lett. 89 222108

    [26]

    Li M, Zhang R, Zhang Z, Yan Y S, Liu B, Fu D, Zhao C J, Xie Z L, Xiu X Q, Zheng Y D 2010 Superlattice and Microstructure 47 522

    [27]

    Li M, Zhang R, Zhang Z, Yan W S, Liu B, Fu D, Zhao C Z, Xie Z L, Xiu X Q, Zheng Y D May 2009 13th International Workshop on Computational Electronics p230–233

    [28]

    Li M, Zhang R, Zhang Z, Liu B, Fu D Y, Zhao C Z, Xie Z L, Xiu X Q, Zheng Y D 2011 Phys. Status Solidi B 248 187

    [29]

    Tan I H, Snider G L, Chang L D, Hu E L 1990 J. Appl. Phys. 68 4071

    [30]

    Kumagai M, Chuang S L, Ando H 1998 Phys. Rev. B 57 15303

    [31]

    Suzuki M, Uenoyama T, Yanase A 1995 Phys. Rev. B 52 8132

    [32]

    Ikai Lo, Tsai J K, Yao W J, Ho P C, Tu L W, Chang T C, Elhamri S, Mitchel W C, Hsieh K Y, Huang J H, Huang H L, Tsai W C 2002 Phys. Rev. B 65 R161306

    [33]

    Tsubaki, Maeda N, Saitoh T, Kobayashi N 2002 Appl. Phys. Lett. 80 3126

    [34]

    Schmult, Manfra M J, Punnoose A, Sergent A M, Baldwin K W, Molnar R J 2006 Phys. Rev. B 74 033302

    [35]

    Koga T, Nitta J, Akazaki T, Takayanagi H 2002 Phys. Rev. Lett. 89 046801

  • [1] 张雪冰, 刘乃漳, 姚若河. AlGaN/GaN高电子迁移率晶体管中二维电子气的极化光学声子散射. 物理学报, 2020, 69(15): 157303. doi: 10.7498/aps.69.20200250
    [2] 曹亚庆, 黄火林, 孙仲豪, 李飞雨, 白洪亮, 张卉, 孙楠, Yung C.Liang. 基于宽禁带GaN基异质结结构的垂直型高温霍尔传感器. 物理学报, 2019, 68(15): 158502. doi: 10.7498/aps.68.20190413
    [3] 马嵩松, 舒天宇, 朱家旗, 李锴, 吴惠桢. Ⅳ-Ⅵ族化合物半导体异质结二维电子气研究进展. 物理学报, 2019, 68(16): 166801. doi: 10.7498/aps.68.20191074
    [4] 李群, 陈谦, 种景. InAlN/GaN异质结二维电子气波函数的变分法研究. 物理学报, 2018, 67(2): 027303. doi: 10.7498/aps.67.20171827
    [5] 赵正印, 王红玲, 李明. Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N量子阱中的Rashba自旋劈裂. 物理学报, 2016, 65(9): 097101. doi: 10.7498/aps.65.097101
    [6] 王现彬, 赵正平, 冯志红. N极性GaN/AlGaN异质结二维电子气模拟. 物理学报, 2014, 63(8): 080202. doi: 10.7498/aps.63.080202
    [7] 王红培, 王广龙, 喻颖, 徐应强, 倪海桥, 牛智川, 高凤岐. 内嵌InAs量子点的δ掺杂GaAs/AlxGa1-xAs二维电子气特性分析. 物理学报, 2013, 62(20): 207303. doi: 10.7498/aps.62.207303
    [8] 张阳, 顾书林, 叶建东, 黄时敏, 顾然, 陈斌, 朱顺明, 郑有炓. ZnMgO/ZnO异质结构中二维电子气的研究. 物理学报, 2013, 62(15): 150202. doi: 10.7498/aps.62.150202
    [9] 王威, 周文政, 韦尚江, 李小娟, 常志刚, 林铁, 商丽燕, 韩奎, 段俊熙, 唐宁, 沈波, 褚君浩. GaN/AlxGa1-xN异质结二维电子气的磁电阻研究. 物理学报, 2012, 61(23): 237302. doi: 10.7498/aps.61.237302
    [10] 商丽燕, 林 铁, 周文政, 黄志明, 李东临, 高宏玲, 崔利杰, 曾一平, 郭少令, 褚君浩. In0.53Ga0.47As/In0.52Al0.48As量子阱中双子带占据的二维电子气的输运特性. 物理学报, 2008, 57(4): 2481-2485. doi: 10.7498/aps.57.2481
    [11] 高宏玲, 李东临, 周文政, 商丽燕, 王宝强, 朱战平, 曾一平. 不同量子阱宽度的InP基In0.53GaAs/In0.52AlAs高电子迁移率晶体管材料二维电子气的性能研究. 物理学报, 2007, 56(8): 4955-4959. doi: 10.7498/aps.56.4955
    [12] 周文政, 林 铁, 商丽燕, 黄志明, 崔利杰, 李东临, 高宏玲, 曾一平, 郭少令, 桂永胜, 褚君浩. InAlAs/InGaAs/InAlAs量子阱高迁移率二维电子气系统中的反弱局域效应研究. 物理学报, 2007, 56(7): 4099-4104. doi: 10.7498/aps.56.4099
    [13] 周忠堂, 郭丽伟, 邢志刚, 丁国建, 谭长林, 吕 力, 刘 建, 刘新宇, 贾海强, 陈 弘, 周均铭. AlGaN/AlN/GaN结构中二维电子气的输运特性. 物理学报, 2007, 56(10): 6013-6018. doi: 10.7498/aps.56.6013
    [14] 朱 博, 桂永胜, 周文政, 商丽燕, 郭少令, 褚君浩, 吕 捷, 唐 宁, 沈 波, 张福甲. Al0.22Ga0.78N/GaN二维电子气中的弱局域和反弱局域效应. 物理学报, 2006, 55(5): 2498-2503. doi: 10.7498/aps.55.2498
    [15] 李东临, 曾一平. InP基HEMT器件中二维电子气浓度及分布与沟道层厚度关系的理论分析. 物理学报, 2006, 55(7): 3677-3682. doi: 10.7498/aps.55.3677
    [16] 周文政, 姚 炜, 朱 博, 仇志军, 郭少令, 林 铁, 崔利杰, 桂永胜, 褚君浩. 单边掺杂InAlAs/InGaAs单量子阱中二维电子气的磁输运特性. 物理学报, 2006, 55(4): 2044-2048. doi: 10.7498/aps.55.2044
    [17] 舒 强, 舒永春, 张冠杰, 刘如彬, 姚江宏, 皮 彪, 邢晓东, 林耀望, 许京军, 王占国. 调制掺杂GaAs/AlGaAs 2DEG材料持久光电导及子带电子特性研究. 物理学报, 2006, 55(3): 1379-1383. doi: 10.7498/aps.55.1379
    [18] 郑泽伟, 沈 波, 桂永胜, 仇志军, 唐 宁, 蒋春萍, 张 荣, 施 毅, 郑有炓, 郭少令, 褚君浩. AlxGa1-x N/GaN调制掺杂异质结构的子带性质研究. 物理学报, 2004, 53(2): 596-600. doi: 10.7498/aps.53.596
    [19] 孔月婵, 郑有炓, 周春红, 邓永桢, 顾书林, 沈 波, 张 荣, 韩 平, 江若琏, 施 毅. AlGaN/GaN异质结构中极化与势垒层掺杂对二维电子气的影响. 物理学报, 2004, 53(7): 2320-2324. doi: 10.7498/aps.53.2320
    [20] 蒋春萍, 桂永胜, 郑国珍, 马智训, 李 标, 郭少令, 褚君浩. n-Hg0.80Mg0.20Te界面积累层中二维电子气的输运特性研究. 物理学报, 2000, 49(9): 1804-1808. doi: 10.7498/aps.49.1804
计量
  • 文章访问数:  4496
  • PDF下载量:  806
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-18
  • 修回日期:  2011-03-29
  • 刊出日期:  2012-01-05

AlGaN/GaN量子阱中子带的Rashba自旋劈裂和子带间自旋轨道耦合作用研究

  • 1. 江苏省光电信息功能材料重点实验室, 南京大学电子科学与工程学院, 南京微结构国家实验室, 南京 210093
    基金项目: 国家自然科学基金(批准号: 60990311, 60721063, 60906025, 60936004), 国家重点基础研究发展计划 (批准号: 2011CB301900), 国家高技术研究发展计划(批准号: 2009AA03A198), 江苏省自然科学基金(批准号: BK2008019, BK2009255, BK2010178)和南京大学扬州光电研究院研发基金资助的课题.

摘要: 首先把本征值方程投影到导带的子空间中, 进而得到AlGaN/GaN量子阱中第一、二子带的Rashba自旋劈裂系数(1,2)和子带间自旋-轨道耦合系数12. 然后自恰求解薛定谔方程和泊松方程计算了不同栅压的量子阱中的1,2和12, 并分别讨论了量子阱阱层、左右异质结界面和垒层对它们的贡献. 结果表明可以通过栅压来调节自旋-轨道耦合系数, 子带间自旋轨道耦合系数12比Rashba自旋劈裂系数1,2小, 但基本在同一数量级.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回