搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于宽禁带GaN基异质结结构的垂直型高温霍尔传感器

曹亚庆 黄火林 孙仲豪 李飞雨 白洪亮 张卉 孙楠 Yung C.Liang

引用本文:
Citation:

基于宽禁带GaN基异质结结构的垂直型高温霍尔传感器

曹亚庆, 黄火林, 孙仲豪, 李飞雨, 白洪亮, 张卉, 孙楠, Yung C.Liang

Demonstration of wide-bandgap GaN-based heterojunction vertical Hall sensors for high-temperature magnetic field detection

Cao Ya-Qing, Huang Huo-Lin, Sun Zhong-Hao, Li Fei-Yu, Bai Hong-Liang, Zhang Hui, Sun Nan, Yung C. Liang
PDF
HTML
导出引用
  • 目前市场主流的窄禁带材料霍尔磁场传感器主要工作在室温或低温环境, 而新型的宽禁带GaN材料霍尔传感器虽然适用于高温, 但器件结构主要是水平型, 受制于异质结界面过高的纵向电场约束, 能探测平行器件表面磁场的垂直型结构至今未见报道, 因此技术上无法实现单一芯片三维磁场探测. 针对该难题, 本文提出基于宽禁带AlGaN/GaN异质结材料, 采用选区浅刻蚀二维电子气沟道势垒层形成局部凹槽结构的方案, 从而实现垂直型结构霍尔传感器, 并且可有效地提高磁场探测灵敏度. 首先对照真实器件测试数据对所提器件材料参数和物理模型进行校准, 然后利用计算机辅助设计技术(TCAD)对器件电极间距比值、台面宽度、感测电极长度等核心结构参数进行优化, 同时对器件特性进行深入分析讨论. 仿真结果表明所设计的霍尔传感器具有高的磁场探测敏感度(器件宽度为2 μm时为113.7 V/(A·T))和低的温度漂移系数(约600 ppm/K), 器件能稳定工作在大于500 K的高温环境. 本文工作针对宽禁带材料垂直型霍尔传感器进行设计研究, 为下一步实现在单一芯片同时制造垂直型和水平型器件, 从而最终获得更高集成度和探测敏感度、能高温应用的三维磁场探测技术奠定了理论基础.
    Magnetic fields are generally sensed by a device that makes use of the Hall effect. Hall-effect sensors are widely used for proximity switching, positioning, speed detecting for the purpose of control and condition monitoring. Currently, the Hall sensor products are mainly based on the narrow-bandgap Si or GaAs semiconductor, and they are suitable for room temperature or low temperature environment, while the novel wide-bandgap GaN-based Hall sensors are more suitable for the application in various high-temperature environments. However, the spatial structure of the GaN-based sensor is mainly horizontal and hence it is only able to detect the magnetic field perpendicular to it. To detect the parallel field on the sensor surface, the vertical structure device is required despite encountering many difficulties in technology, for example reducing the vertical electric field in the two-dimensional electron gas (2-DEG) channel. The vertical Hall sensor has not been reported so far, so it is technically impossible to realize three-dimensional magnetic field detection on single chip. To address the mentioned issues, in this paper we propose a design of the vertical Hall sensor based on the wide-bandgap AlGaN/GaN heterojunction material, which adopts a shallow etching of 2-DEG channel barrier to form a locally trenched structure. The material parameters and physical models of the proposed device are first calibrated against real device test data, and then the key structural parameters such as device electrode spacing ratio, mesa width and sensing electrode length are optimized by using technology computer aided design, and the device characteristics are analyzed. Finally, the simulation results confirm that the proposed Hall sensor has a higher sensitivity of magnetic field detection and lower temperature drift coefficient ($\sim $600 ppm/K), and the device can work stably in a high-temperature (greater than 500 K) environment. Therefore, the vertical and horizontal devices can be fabricated simultaneously on the same wafer in the future, thus achieving a three-dimensional magnetic field detection in various high-temperature environments.
      通信作者: 黄火林, hlhuang@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51607022)和中央高校基本科研业务费专项资金(批准号: DUT17LK13)资助的课题.
      Corresponding author: Huang Huo-Lin, hlhuang@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51607022) and the Fundamental Research Funds for the Central Universities, China (Grant No. DUT17LK13).
    [1]

    Boero G, Demierre M, Besse P A, Popovic R S 2003 Sens. Actuator A: Phys. 106 314Google Scholar

    [2]

    Nama T, Gogoi A K, Tripathy P 2017 2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS) Ottawa, Canada, October 5−7, 2017 p208

    [3]

    Roumenin C, Dimitrov K, Ivanov A 2001 Sens. Actuator A: Phys. 92 119Google Scholar

    [4]

    Dimitrov K 2007 Measurement 40 816Google Scholar

    [5]

    黄乐, 张志勇, 彭练矛 2017 物理学报 66 218501Google Scholar

    Huang L, Zhang Z Y, Peng L M 2017 Acta Phys. Sin. 66 218501Google Scholar

    [6]

    Bilotti A, Monreal G, Vig R 1997 IEEE J. Solid-State Circuit. 32 829Google Scholar

    [7]

    Behet M, Bekaert J, de Boeck J, Borghs G 2000 Sens. Actuator A: Phys. 81 13Google Scholar

    [8]

    Kunets V P, Easwaran S, Black W T, Guzun D, Mazur Y I, Goel N, Mishima T D, Santos M B, Salamo G J 2009 IEEE Trans. Electron Dev. 56 683

    [9]

    Koide S, Takahashi H, Abderrahmane A, Shibasaki I, Sandhu A 2012 J. Phys.: Conf. Ser. 352 012009Google Scholar

    [10]

    Hassan A, Ali M, Savaria Y, Sawan M 2019 Microelectron. J. 84 129Google Scholar

    [11]

    Li L, Chen J, Gu X, Li X, Pu T, Ao J-P 2018 Superlattice Microst. 123 274Google Scholar

    [12]

    Alim M A, Rezazadeh A A, Gaquiere C, Crupi G 2019 Semicond. Sci. Technol. 34 035002Google Scholar

    [13]

    Dowling K M, Alpert H S, Yalamarthy A S, Satterthwaite P F, Kumar S, Köck H, Ausserlechner U, Senesky D G 2019 IEEE Sens. Lett. 3 2500904Google Scholar

    [14]

    唐文昕, 郝荣晖, 陈扶, 于国浩, 张宝顺 2018 物理学报 67 198501Google Scholar

    Tang W X, Hao R H, Chen F, Yu G H, Zhang B S 2018 Acta Phys. Sin. 67 198501Google Scholar

    [15]

    Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A, Stutzmann M 2000 J. Appl. Phys. 87 334Google Scholar

    [16]

    Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222Google Scholar

    [17]

    Abderrahmane A, Koide S, Sato S I, Ohshima T, Sandhu A, Okada H 2012 IEEE Trans. Magn. 48 4421Google Scholar

    [18]

    Nifa I, Leroux C, Torres A, Charles M, Blachier D, Reimbold G, Ghibaudo G, Bano E 2017 Microelectron. Eng. 178 128Google Scholar

    [19]

    White T P, Shetty S, Ware M E, Mantooth H A, Salamo G J 2018 IEEE Sens. J. 18 2944Google Scholar

    [20]

    Abderrahmane A, Tashiro T, Takahashi H, Ko P J, Okada H, Sato S, Ohshima T, Sandhu A 2014 Appl. Phys. Lett. 104 023508Google Scholar

    [21]

    Heidari H, Bonizzoni E, Gatti U, Maloberti F, Dahiya R 2016 IEEE Sens. J. 16 8736Google Scholar

    [22]

    Kaufmann T, Vecchi M C, Ruther P, Paul O 2012 Sensor. Actuat. A: Phys. 178 1Google Scholar

    [23]

    黄杨, 徐跃, 郭宇锋 2015 半导体学报 36 124006

    Huang Y, Xu Y, Guo Y 2015 J. Semicond. 36 124006

    [24]

    Popovic R S 1984 IEEE Electron Dev. Lett. 5 357Google Scholar

    [25]

    Pascal J, Hebrard L, Kammerer J B, Frick V, Blonde J P 2007 IEEE Sensors 2007 Conference Atlanta, GA, USA, October 28–31, 2007 p1480

    [26]

    Popovic R S 2003 Hall Effect Devices (Vol. 2) (London: Institute of Physics Publishing) pp179−242

    [27]

    Allegretto W, Nathan A, Baltes H 1991 IEEE Trans. Comput.: Aided Des. Integr. Circuits Syst. 10 501Google Scholar

    [28]

    Riccobene C, Gartner K, Wachutka G, Baltes H, Fichtner W 1994 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 11−14, 1994 p727

    [29]

    Riccobene C, Wachutka G, Burgler J, Baltes H 1994 IEEE Trans. Electron Dev. 41 32

    [30]

    Farahmand M, Garetto C, Bellotti E, Brennan K F, Goano M, Ghillino E, Ghione G, Albrecht J D, Ruden P P 2001 IEEE Trans. Electron Dev. 48 535Google Scholar

    [31]

    Anderson T J, Tadjer M J, Mastro M A, Hite J K, Hobart K D, Eddy C R, Kub F J 2010 J. Electron. Mater. 39 478Google Scholar

    [32]

    Consejo C, Contreras S, Konczewicz L, Lorenzini P, Cordier Y, Skierbiszewski C, Robert J L 2005 Phys. Stat. Sol. (c) 2 1438Google Scholar

    [33]

    Roumenin C S, Nikolov D, Ivanov A 2004 Sensor. Actuat. A: Phys. 115 303Google Scholar

    [34]

    Zhao X, Bai Y, Deng Q, Ai C, Yang X, Wen D 2017 IEEE Sens. J. 17 5849Google Scholar

    [35]

    Kejik P, Schurig E, Bergsma F, Popovic R S 2005 The 13th International Conference on Solid-State Sensors Seoul, Korea, June 5–9, 2005 p317

    [36]

    Yamamura T, Nakamura D, Higashiwaki M, Matsui T, Sandhu A 2006 J. Appl. Phys. 99 08B302

  • 图 1  基于GaN基异质结结构的垂直型霍尔传感器结构 (a)剖面图; (b)俯视图

    Fig. 1.  Schematic diagram of GaN-based vertical Hall sensor: (a) Sectional and (b) top views.

    图 2  器件仿真数据与实验转移特性结果进行对比的器件参数校准过程[31]

    Fig. 2.  Comparisons of simulated IDS-VGS characteristics of the Hall sensor with the experimental data.

    图 3  2-DEG沟道界面下方电子浓度分布与势垒层剩余厚度的关系

    Fig. 3.  Profiles of 2-DEG concentration vs. AlGaN barrier thickness.

    图 4  霍尔电压(或2-DEG电子浓度)与势垒层剩余厚度的关系

    Fig. 4.  Hall voltage (or 2-DEG concentration) vs. AlGaN barrier thickness.

    图 5  d = 7 nm时, 传感器电流密度空间分布对比 (a)无外加磁场; (b)外加磁场B = 1 T

    Fig. 5.  Comparisons of current density distribution in vertical Hall sensor with d = 7 nm under the conditions of (a) B = 0 and (b) B = 1 T.

    图 6  电流相关敏感度SIL2/L1比值的关系

    Fig. 6.  Current-related sensitivity as a function of the ratio of L2/L1.

    图 7  电流相关敏感度SI(或输入电阻Rin)与感测电极长度l2的关系

    Fig. 7.  Current-related sensitivity and input resistance as a function of the l2.

    图 8  电流相关敏感度(或输入电阻)与器件宽度w的关系

    Fig. 8.  Current-related sensitivity and input resistance as a function of the w.

    图 9  器件输出电压随磁场和工作温度的变化

    Fig. 9.  Temperature dependence of output Hall voltage as a function of magnetic induction.

    图 10  电流相关敏感度随工作温度的变化

    Fig. 10.  Current-related sensitivity as a function of temperature.

    表 1  仿真中所用的典型器件物理参数

    Table 1.  Summary of physical parameters adopted in the simulations.

    物理参数单位GaNAlN
    禁带宽度 EgeV3.46.2
    电子亲和能χV3.41.9
    相对介电常数$\epsilon $9.48.8
    迁移率 μcm2/(V·s)1310300
    电子饱和速率 vsatcm/s1.8 × 1071.3 × 107
    电子发射截面 σ0ncm21.0 × 10–151.0 × 10–15
    导带状态密度 Nccm–32.7 × 10184.1 × 1018
    价带状态密度 Nvcm–32.5 × 10192.8 × 1020
    热导率 κW/(cm·K)1.32.9
    下载: 导出CSV

    表 2  基于不同材料的霍尔传感器关键性能指标对比

    Table 2.  Comparisons of key performances of Hall sensors based on various materials.

    器件类别工作温度/K温漂系数ST/ppm·K–1灵敏度SI/V·(A·T)–1
    Si基垂直型[33]T < 350$\sim $100041 (x方向)
    Si基垂直型[34]T < 350454577.5 (x方向)
    Si基垂直型[35]T < 3501500N/A
    InAs/AlGaSb水平型[7]T < 4001710250
    InAs/AlGaSb水平型[7]T < RT2690302
    AlGaN/GaN水平型[19]T > 400$\sim $1000113
    AlGaN/GaN水平型[36]T > 40082046
    AlGaN/GaN垂直型(本文)T > 500$\sim $60075.7 (w = 3 μm)
    113.7 (w = 2 μm)
    下载: 导出CSV
  • [1]

    Boero G, Demierre M, Besse P A, Popovic R S 2003 Sens. Actuator A: Phys. 106 314Google Scholar

    [2]

    Nama T, Gogoi A K, Tripathy P 2017 2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS) Ottawa, Canada, October 5−7, 2017 p208

    [3]

    Roumenin C, Dimitrov K, Ivanov A 2001 Sens. Actuator A: Phys. 92 119Google Scholar

    [4]

    Dimitrov K 2007 Measurement 40 816Google Scholar

    [5]

    黄乐, 张志勇, 彭练矛 2017 物理学报 66 218501Google Scholar

    Huang L, Zhang Z Y, Peng L M 2017 Acta Phys. Sin. 66 218501Google Scholar

    [6]

    Bilotti A, Monreal G, Vig R 1997 IEEE J. Solid-State Circuit. 32 829Google Scholar

    [7]

    Behet M, Bekaert J, de Boeck J, Borghs G 2000 Sens. Actuator A: Phys. 81 13Google Scholar

    [8]

    Kunets V P, Easwaran S, Black W T, Guzun D, Mazur Y I, Goel N, Mishima T D, Santos M B, Salamo G J 2009 IEEE Trans. Electron Dev. 56 683

    [9]

    Koide S, Takahashi H, Abderrahmane A, Shibasaki I, Sandhu A 2012 J. Phys.: Conf. Ser. 352 012009Google Scholar

    [10]

    Hassan A, Ali M, Savaria Y, Sawan M 2019 Microelectron. J. 84 129Google Scholar

    [11]

    Li L, Chen J, Gu X, Li X, Pu T, Ao J-P 2018 Superlattice Microst. 123 274Google Scholar

    [12]

    Alim M A, Rezazadeh A A, Gaquiere C, Crupi G 2019 Semicond. Sci. Technol. 34 035002Google Scholar

    [13]

    Dowling K M, Alpert H S, Yalamarthy A S, Satterthwaite P F, Kumar S, Köck H, Ausserlechner U, Senesky D G 2019 IEEE Sens. Lett. 3 2500904Google Scholar

    [14]

    唐文昕, 郝荣晖, 陈扶, 于国浩, 张宝顺 2018 物理学报 67 198501Google Scholar

    Tang W X, Hao R H, Chen F, Yu G H, Zhang B S 2018 Acta Phys. Sin. 67 198501Google Scholar

    [15]

    Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A, Stutzmann M 2000 J. Appl. Phys. 87 334Google Scholar

    [16]

    Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222Google Scholar

    [17]

    Abderrahmane A, Koide S, Sato S I, Ohshima T, Sandhu A, Okada H 2012 IEEE Trans. Magn. 48 4421Google Scholar

    [18]

    Nifa I, Leroux C, Torres A, Charles M, Blachier D, Reimbold G, Ghibaudo G, Bano E 2017 Microelectron. Eng. 178 128Google Scholar

    [19]

    White T P, Shetty S, Ware M E, Mantooth H A, Salamo G J 2018 IEEE Sens. J. 18 2944Google Scholar

    [20]

    Abderrahmane A, Tashiro T, Takahashi H, Ko P J, Okada H, Sato S, Ohshima T, Sandhu A 2014 Appl. Phys. Lett. 104 023508Google Scholar

    [21]

    Heidari H, Bonizzoni E, Gatti U, Maloberti F, Dahiya R 2016 IEEE Sens. J. 16 8736Google Scholar

    [22]

    Kaufmann T, Vecchi M C, Ruther P, Paul O 2012 Sensor. Actuat. A: Phys. 178 1Google Scholar

    [23]

    黄杨, 徐跃, 郭宇锋 2015 半导体学报 36 124006

    Huang Y, Xu Y, Guo Y 2015 J. Semicond. 36 124006

    [24]

    Popovic R S 1984 IEEE Electron Dev. Lett. 5 357Google Scholar

    [25]

    Pascal J, Hebrard L, Kammerer J B, Frick V, Blonde J P 2007 IEEE Sensors 2007 Conference Atlanta, GA, USA, October 28–31, 2007 p1480

    [26]

    Popovic R S 2003 Hall Effect Devices (Vol. 2) (London: Institute of Physics Publishing) pp179−242

    [27]

    Allegretto W, Nathan A, Baltes H 1991 IEEE Trans. Comput.: Aided Des. Integr. Circuits Syst. 10 501Google Scholar

    [28]

    Riccobene C, Gartner K, Wachutka G, Baltes H, Fichtner W 1994 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 11−14, 1994 p727

    [29]

    Riccobene C, Wachutka G, Burgler J, Baltes H 1994 IEEE Trans. Electron Dev. 41 32

    [30]

    Farahmand M, Garetto C, Bellotti E, Brennan K F, Goano M, Ghillino E, Ghione G, Albrecht J D, Ruden P P 2001 IEEE Trans. Electron Dev. 48 535Google Scholar

    [31]

    Anderson T J, Tadjer M J, Mastro M A, Hite J K, Hobart K D, Eddy C R, Kub F J 2010 J. Electron. Mater. 39 478Google Scholar

    [32]

    Consejo C, Contreras S, Konczewicz L, Lorenzini P, Cordier Y, Skierbiszewski C, Robert J L 2005 Phys. Stat. Sol. (c) 2 1438Google Scholar

    [33]

    Roumenin C S, Nikolov D, Ivanov A 2004 Sensor. Actuat. A: Phys. 115 303Google Scholar

    [34]

    Zhao X, Bai Y, Deng Q, Ai C, Yang X, Wen D 2017 IEEE Sens. J. 17 5849Google Scholar

    [35]

    Kejik P, Schurig E, Bergsma F, Popovic R S 2005 The 13th International Conference on Solid-State Sensors Seoul, Korea, June 5–9, 2005 p317

    [36]

    Yamamura T, Nakamura D, Higashiwaki M, Matsui T, Sandhu A 2006 J. Appl. Phys. 99 08B302

  • [1] 耿鑫, 张结印, 卢文龙, 明铭, 刘方泽, 符彬啸, 褚逸昕, 颜谋回, 王保传, 张新定, 郭国平, 张建军. 非掺杂型Si/SiGe异质结外延与表征. 物理学报, 2024, 73(11): 117302. doi: 10.7498/aps.73.20240310
    [2] 王继光, 李珑玲, 邱嘉图, 陈许敏, 曹东兴. 钙钛矿超晶格材料界面二维电子气的调控. 物理学报, 2023, 72(17): 176801. doi: 10.7498/aps.72.20230573
    [3] 周展辉, 李群, 贺小敏. AlN/β-Ga2O3异质结电子输运机制. 物理学报, 2023, 72(2): 028501. doi: 10.7498/aps.72.20221545
    [4] 冉峰, 梁艳, 张坚地. 氧化物异质界面上的准二维超导. 物理学报, 2023, 72(9): 097401. doi: 10.7498/aps.72.20230044
    [5] 张雪冰, 刘乃漳, 姚若河. AlGaN/GaN高电子迁移率晶体管中二维电子气的极化光学声子散射. 物理学报, 2020, 69(15): 157303. doi: 10.7498/aps.69.20200250
    [6] 马嵩松, 舒天宇, 朱家旗, 李锴, 吴惠桢. Ⅳ-Ⅵ族化合物半导体异质结二维电子气研究进展. 物理学报, 2019, 68(16): 166801. doi: 10.7498/aps.68.20191074
    [7] 李群, 陈谦, 种景. InAlN/GaN异质结二维电子气波函数的变分法研究. 物理学报, 2018, 67(2): 027303. doi: 10.7498/aps.67.20171827
    [8] 曹江伟, 王锐, 王颖, 白建民, 魏福林. 隧穿磁电阻效应磁场传感器中低频噪声的测量与研究. 物理学报, 2016, 65(5): 057501. doi: 10.7498/aps.65.057501
    [9] 李加东, 程珺洁, 苗斌, 魏晓玮, 张志强, 黎海文, 吴东岷. 生物分子膜门电极AlGaN/GaN高电子迁移率晶体管(HEMT)生物传感器研究. 物理学报, 2014, 63(7): 070204. doi: 10.7498/aps.63.070204
    [10] 王现彬, 赵正平, 冯志红. N极性GaN/AlGaN异质结二维电子气模拟. 物理学报, 2014, 63(8): 080202. doi: 10.7498/aps.63.080202
    [11] 王红培, 王广龙, 喻颖, 徐应强, 倪海桥, 牛智川, 高凤岐. 内嵌InAs量子点的δ掺杂GaAs/AlxGa1-xAs二维电子气特性分析. 物理学报, 2013, 62(20): 207303. doi: 10.7498/aps.62.207303
    [12] 张阳, 顾书林, 叶建东, 黄时敏, 顾然, 陈斌, 朱顺明, 郑有炓. ZnMgO/ZnO异质结构中二维电子气的研究. 物理学报, 2013, 62(15): 150202. doi: 10.7498/aps.62.150202
    [13] 王威, 周文政, 韦尚江, 李小娟, 常志刚, 林铁, 商丽燕, 韩奎, 段俊熙, 唐宁, 沈波, 褚君浩. GaN/AlxGa1-xN异质结二维电子气的磁电阻研究. 物理学报, 2012, 61(23): 237302. doi: 10.7498/aps.61.237302
    [14] 倪金玉, 郝跃, 张进成, 段焕涛, 张金风. 高温AlN插入层对AlGaN/GaN异质结材料和HEMTs器件电学特性的影响. 物理学报, 2009, 58(7): 4925-4930. doi: 10.7498/aps.58.4925
    [15] 周忠堂, 郭丽伟, 邢志刚, 丁国建, 谭长林, 吕 力, 刘 建, 刘新宇, 贾海强, 陈 弘, 周均铭. AlGaN/AlN/GaN结构中二维电子气的输运特性. 物理学报, 2007, 56(10): 6013-6018. doi: 10.7498/aps.56.6013
    [16] 李东临, 曾一平. InP基HEMT器件中二维电子气浓度及分布与沟道层厚度关系的理论分析. 物理学报, 2006, 55(7): 3677-3682. doi: 10.7498/aps.55.3677
    [17] 周文政, 姚 炜, 朱 博, 仇志军, 郭少令, 林 铁, 崔利杰, 桂永胜, 褚君浩. 单边掺杂InAlAs/InGaAs单量子阱中二维电子气的磁输运特性. 物理学报, 2006, 55(4): 2044-2048. doi: 10.7498/aps.55.2044
    [18] 孔月婵, 郑有炓, 周春红, 邓永桢, 顾书林, 沈 波, 张 荣, 韩 平, 江若琏, 施 毅. AlGaN/GaN异质结构中极化与势垒层掺杂对二维电子气的影响. 物理学报, 2004, 53(7): 2320-2324. doi: 10.7498/aps.53.2320
    [19] 孔月婵, 郑有炓, 储荣明, 顾书林. AlxGa1-xN/GaN异质结构中Al组分对二维电子气性质的影响. 物理学报, 2003, 52(7): 1756-1760. doi: 10.7498/aps.52.1756
    [20] 蒋春萍, 桂永胜, 郑国珍, 马智训, 李 标, 郭少令, 褚君浩. n-Hg0.80Mg0.20Te界面积累层中二维电子气的输运特性研究. 物理学报, 2000, 49(9): 1804-1808. doi: 10.7498/aps.49.1804
计量
  • 文章访问数:  9626
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-23
  • 修回日期:  2019-05-23
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-05

/

返回文章
返回