搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AlN/β-Ga2O3异质结电子输运机制

周展辉 李群 贺小敏

引用本文:
Citation:

AlN/β-Ga2O3异质结电子输运机制

周展辉, 李群, 贺小敏

Electron transport mechanism in AlN/β-Ga2O3 heterostructures

Zhou Zhan-Hui, Li Qun, He Xiao-Min
PDF
HTML
导出引用
  • β-Ga2O3具有禁带宽度大、击穿电场强的优点, 在射频及功率器件领域具有广阔的应用前景. β-Ga2O3 ($ \bar 201 $)晶面和AlN (0002)晶面较小的晶格失配和较大的导带阶表明二者具有结合为异质结并形成二维电子气(two-dimensional electron gas, 2DEG)的理论基础, 引起了众多研究者关注. 本文利用AlN的表面态假设, 通过求解薛定谔-泊松方程组计算了AlN/β-Ga2O3异质结导带形状和2DEG面密度, 并将结果应用于玻尔兹曼输运理论, 计算了离化杂质散射、界面粗糙散射、声学形变势散射、极性光学声子散射等主要散射机制限制的迁移率, 评估了不同散射机制的相对重要性. 结果表明, 2DEG面密度随AlN厚度的增加而增加, 当AlN厚度为6 nm, 2DEG面密度可达1.0×1013 cm–2, 室温迁移率为368.6 cm2/(V·s). 在T < 184 K的中低温区域, 界面粗糙散射是限制2DEG迁移率的主导散射机制, T > 184 K的温度区间, 极性光学声子散射是限制2DEG迁移率的主导散射机制.
    The β-Ga2O3 has received much attention in the field of power and radio frequency electronics, due to an ultrawide bandgap energy of ~4.9 eV and a high breakdown field strength of ~8 MV/cm (Poncé et al. 2020 Phys. Rev. Res. 2 033102). The in-plane lattice mismatch of 2.4% between the ($ \bar 201 $) plane of β-Ga2O3 and the (0002) plane of wurtzite AlN is beneficial to the formation of an AlN/β-Ga2O3 heterostructure (Sun et al. 2017 Appl. Phys. Lett. 111 162105), which is a potential candidate for β-Ga2O3-based high electron mobility transistors (HEMTs). In this study, the Schrödinger-Poisson equations are solved to calculate the AlN/β-Ga2O3 conduction band profile and the two-dimensional electron gas(2DEG) sheet density, based on the supposition that the 2DEG originates from door-like surface states distributed evenly below the AlN conduction band. The main scattering mechanisms in AlN/β-Ga2O3 heterostructures, i.e. the ionized impurity scattering, interface roughness scattering, acoustic deformation-potential scattering, and polar optical phonon scattering, are investigated by using the Boltzmann transport theory. Besides, the relative importance of different scattering mechanisms is evaluated. The results show that at room temperature, the 2DEG sheet density increases with the augment of AlN thickness, and reaches 1.0×1013 cm–2 at an AlN thickness of 6 nm. With the increase of the 2DEG sheet density, the ionized impurity scattering limited mobility increases, but other scattering mechanisms limited mobilities decrease. The interface roughness scattering dominates the mobility at low temperature and moderate temperature (T < 148 K), and the polar optical phonon scattering dominates the mobility at temperatures above 148 K. The room-temperature mobility is 368.6 cm2/(V·s) for the AlN/β-Ga2O3 heterostructure with an AlN thickness of 6 nm.
      通信作者: 李群, liqun@xaut.edu.cn ; 贺小敏, hexiaomin@xaut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62104190)、中国博士后科学基金(批准号: 2019M653881XB)和陕西省自然科学基础研究计划 (批准号: 2019JM-323 )资助的课题.
      Corresponding author: Li Qun, liqun@xaut.edu.cn ; He Xiao-Min, hexiaomin@xaut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62104190), the China Postdoctoral Science Foundation (Grant No. 2019M653881XB), and the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2019JM-323).
    [1]

    Green A J, Speck J, Xing G, et al. 2022 APL Mater. 10 029201Google Scholar

    [2]

    Ranga P, Bhattacharyya A, Chmielewski A, Roy S, Sun R, Scarpulla M A, Alem N, Krishnamoorthy S 2021 Appl. Phys. Express 14 025501Google Scholar

    [3]

    Wong M H, Bierwagen O, Kaplar R J, Umezawa H 2021 J. Mater. Res. 36 4601Google Scholar

    [4]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [5]

    Poncé S, Giustino F 2020 Phys. Rev. Res. 2 033102Google Scholar

    [6]

    Ghosh K, Singisetti U 2017 J. Appl. Phys. 122 035702Google Scholar

    [7]

    Nehate S, Saikumar A K, Sundaram K 2021 Crit. Rev. Solid State 47 538Google Scholar

    [8]

    Wang D P, Li J N, Jiao A N, Zhang X C, Lu X l, Ma X H, Hao Y 2021 J. Alloys Compd. 855 157296Google Scholar

    [9]

    Ranga P, Bhattacharyya A, Rishinaramangalam A, Ooi Y K, Scarpulla M A, Feezell D, Krishnamoorthy S 2020 Appl. Phys. Express 13 045501Google Scholar

    [10]

    Tadjer M J, Sasaki K, Wakimoto D, Anderson T J, Mastro M A, Gallagher J C, Jacobs A G, Mock A L, Koehler A D, Ebrish M, Hobart K D, Kuramata A 2021 J. Vac. Sci. Technol. 39 033402Google Scholar

    [11]

    Krishnamoorthy S, Xia Z, Joishi C, Zhang Y, McGlone J, Johnson J, Brenner M, Arehart A R, Hwang J, Lodha S, Rajan S 2017 Appl. Phys. Lett. 111 023502Google Scholar

    [12]

    Kalarickal N K, Xia Z B, McGlone J F, Liu Y M, Moore W, Arehart A R, Ringel S A, Rajan S 2020 J. Appl. Phys. 127 215706Google Scholar

    [13]

    Zhang Y W, Neal A, Xia Z B, Joishi C, Johnson J M, Zheng Y H, Bajaj S, Brenner M, Dorsey D, Chabak K, Jessen G, Hwang J, Mou S, Heremans J P, Rajan S 2018 Appl. Phys. Lett. 112 173502Google Scholar

    [14]

    Sun H D, Torres Castanedo C G, Liu K K, Li K H, Guo W Z, Lin R H, Liu X W, Li J T, Li X H 2017 Appl. Phys. Lett. 111 162105Google Scholar

    [15]

    Ho S T 2020 M. S. Dessertation (New York: Cornell University)

    [16]

    Yan P R, Zhang Z, Xu Y, Chen H, Chen D Z, Feng Q, Xu S R, Zhang Y C, Zhang J C, Zhang C F, Hao Y 2022 Vacuum 204 111381Google Scholar

    [17]

    Singh R, Lenka T R, Velpula R T, Jain B, Bui H Q T, Nguyen H P T 2021 Int. J. Numer. Model. El. 34 e2794Google Scholar

    [18]

    Song K, Zhang H C, Fu H Q, Yang C, Singh R, Zhao Y J, Sun H D, Long S B 2020 J. Phys. D Appl. Phys. 53 345107Google Scholar

    [19]

    Jiao W Y, Kong W, Li J C, Collar K, Kim T H, Losurdo M, Brown A S 2016 Appl. Phys. Lett. 109 082103Google Scholar

    [20]

    Yu C, Debdeep J 2007 Appl. Phys. Lett. 90 182112Google Scholar

    [21]

    Singh R, Lenka T R, Velpula R T, Jain B, Bui H Q T, Nguyen H P T 2020 J. Semicond. 41 102802Google Scholar

    [22]

    Gordon L, Miao M-S, Chowdhury S, Higashiwaki M, Mishra U K, van de Walle C G 2010 J. Phys. D: Appl. Phys. 43 505501Google Scholar

    [23]

    Goyal N, Iniguez B, Fjeldly T A 2013 AIP Conf. Proc. 1566 393Google Scholar

    [24]

    Goyal N, Fjeldly T A 2016 IEEE T. Electron Dev. 63 881Google Scholar

    [25]

    陈谦, 李群, 杨莺 2019 物理学报 68 017301Google Scholar

    Chen Q, Li Q, Yang Y 2019 Acta Phys. Sin. 68 017301Google Scholar

    [26]

    Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222Google Scholar

    [27]

    李群, 陈谦, 种景 2018 物理学报 67 027303Google Scholar

    Li Q, Chen Q, Chong J 2018 Acta Phys. Sin. 67 027303Google Scholar

    [28]

    张阳, 顾书林, 叶建东, 黄时敏, 顾然, 陈斌, 朱顺明, 郑有炓 2013 物理学报 62 150202Google Scholar

    Zhang Y, Gu S L, Ye J D, Huang S M, Gu R, Chen B, Zhu S M, Zhen Y D 2013 Acta Phys. Sin. 62 150202Google Scholar

    [29]

    Li Q, Zhang J W, Meng L, Hou X 2014 Phys. Status Solidi B 251 755Google Scholar

    [30]

    Li Q, Zhang J W, Zhang Z Y, Li F N, Hou X 2014 Semicond. Sci. Technol. 29 115001Google Scholar

    [31]

    Li Q, Zhang J W, Chong J, Hou X 2013 Appl. Phys. Express 6 121102Google Scholar

    [32]

    Kawamura T, Das Sarma S 1992 Phys. Rev., B: Condens. Matter. 45 3612Google Scholar

    [33]

    Goodnick S M, Ferry D K, Wilmsen C W 1985 Phys. Rev. B 32 8171Google Scholar

    [34]

    Gurusinghe M N, Davidsson S K, Andersson T G 2005 Phys. Rev. B 72 45316Google Scholar

    [35]

    Ishibashi A, Takeishi H, Mannoh M, Yabuuchi Y, Ban Y 1996 J. Electron. Mater. 25 799Google Scholar

    [36]

    Li J M, Wu J J, Han X X, Lu Y W, Liu X L, Zhu Q S, Wang Z G 2005 Semicond. Sci. Technol. 20 1207Google Scholar

    [37]

    Anderson D, Zakhleniuk N, Babiker M, Ridley B, Bennett C 2001 Phys. Rev. B 63 245313Google Scholar

    [38]

    Parisini, Antonella, Fornari, Roberto 2016 Semicond. Sci. Technol. 31 35023.1Google Scholar

    [39]

    Zhi G, Verma A, Wu X, Sun F, Hickman A, Masui T, Kuramata A, Higashiwaki M, Jena D, Luo T 2015 Appl. Phys. Lett. 106 591

    [40]

    Varley J B, Weber J R, Janotti A, Van d W, C. G. 2010 Appl. Phys. Lett. 108 142106Google Scholar

    [41]

    Passlack M, Hunt N, Schubert E F, Zydzik G J, Hong M, Mannaerts J P, Opila R L, Fischer R J 1994 Appl. Phys. Lett. 64 2715Google Scholar

    [42]

    Passlack M, Hong M, Schubert E F, Kwo J R, Mannaerts J P, Chu S, Moriya N, Thiel F A 1995 Appl. Phys. Lett. 66 625Google Scholar

    [43]

    Rebien M, Henrion W, Hong M, Mannaerts J P, Fleischer M 2002 Appl. Phys. Lett. 81 250Google Scholar

    [44]

    Rode D L 1970 Phys. Rev. B 2 1012Google Scholar

    [45]

    Liu B, Gu M, Liu X 2007 Appl. Phys. Lett. 91 172102Google Scholar

    [46]

    Fischer A, Kühne H, Richter H 1994 Phys. Rev. Lett. 73 2712Google Scholar

    [47]

    Sanchez A M, Pacheco F J, Molina S I, Stemmer J, Aderhold J, Graul J 2001 J. Electron. Mater. 30 L17Google Scholar

  • 图 1  (a) β-Ga2O3 ($\bar 201 $)晶面和(b)AlN (0002)晶面的原子排列

    Fig. 1.  The atomic arrangement in (a) ($\bar 201 $) plane of β-Ga2O3 and (b) (0002) plane of AlN.

    图 2  AlN/β-Ga2O3异质结表面态能级分布示意图

    Fig. 2.  Schematic drawing of energy distribution of surface states in an AlN/β-Ga2O3 heterostructure.

    图 3  AlN/β-Ga2O3异质结导带形状和2DEG浓度分布, AlN厚度$ d=6 $ nm

    Fig. 3.  The conduction band profile and spatially distributed density of the 2DEG in an AlN/β-Ga2O3 heterostructure with an AlN thickness of 6 nm.

    图 4  2DEG面密度对AlN厚度的依赖关系

    Fig. 4.  Dependence of the 2DEG sheet density on the AlN thickness.

    图 5  IRS限制的迁移率对相关长度$ \varLambda $的依赖关系

    Fig. 5.  Dependence of the mobility limited by IRS on correlation length $ \varLambda $ for different roughness heights.

    图 6  300 K时离化杂质散射限制的动量弛豫时间($ {\tau }_{\rm{I}\rm{I}\rm{S}} $)、界面粗糙散射限制的动量弛豫时间($ {\tau }_{\rm{D}\rm{P}} $)、声学形变势散射限制的动量弛豫时间($ {\tau }_{\rm{D}\rm{P}} $)对电子能量的依赖关系

    Fig. 6.  Dependence of the momentum relaxation time limited by ionized impurity scattering ($ {\tau }_{\rm{I}\rm{I}\rm{S}} $), interface roughness scattering ($ {\tau }_{\rm{I}\rm{R}\rm{S}} $) and acoustic DP scattering ($ {\tau }_{\rm{D}\rm{P}} $) on the electron energy.

    图 7  动量弛豫时间对电子能量的依赖关系

    Fig. 7.  Dependence of the momentum relaxation time on the electron energy.

    图 8  300 K时离化杂质散射限制的迁移率($ {\mu }_{\rm{I}\rm{I}\rm{S}} $)、界面粗糙散射限制的迁移率($ {\mu }_{\rm{I}\rm{R}\rm{S}} $)、声学形变势散射限制的迁移率($ {\mu }_{\rm{D}\rm{P}} $)、极性光学声子散射限制的迁移率($ {\mu }_{\rm{P}\rm{O}} $)对2DEG面密度的依赖

    Fig. 8.  Dependence of the mobility limited by ionized impurity scattering ($ {\mu }_{\rm{I}\rm{I}\rm{S}} $), interface roughness scattering ($ {\mu }_{\rm{I}\rm{R}\rm{S}} $), acoustic DP scattering ($ {\mu }_{\rm{D}\rm{P}} $) and PO phonon scattering ($ {\mu }_{\rm{P}\rm{O}} $) on the 2DEG sheet density at 300 K.

    图 9  $ {\mu }_{\rm{D}\rm{P}} $, $ {\mu }_{\rm{I}\rm{I}\rm{S}} $, $ {\mu }_{\rm{I}\rm{R}\rm{S}} $, $ {\mu }_{\rm{P}\rm{O}} $以及总的迁移率($ {\mu }_{\rm{T}\rm{O}\rm{T}} $)对温度的依赖关系, 相关长度$ \varLambda =5\;\rm{n}\rm{m} $, 粗糙高度$\varDelta =1\;\rm{n}\rm{m}$

    Fig. 9.  Temperature dependence of the $ {\mu }_{\rm{D}\rm{P}} $, $ {\mu }_{\rm{I}\rm{I}\rm{S}} $, $ {\mu }_{\rm{I}\rm{R}\rm{S}} $, $ {\mu }_{\rm{P}\rm{O}} $, and the total mobility$ {\mu }_{\rm{T}\rm{O}\rm{T}} $, the correlation length $ \varLambda =5 $ nm and roughness height $\varDelta =1$ nm.

    表 1  计算过程中用到的AlN/β-Ga2O3异质结参数($ {m}_{0} $为自由电子质量)

    Table 1.  Parameters of AlN/β-Ga2O3 heterostructure employed in calculations ($ {m}_{0} $ is the free electron mass).

    物理量符号/单位参数值
    AlN晶格常数aAlN3.112[26]
    AlN压电常数e31/(C·m−2)–0.60[26]
    e33/(C·m−2)1.55[26]
    AlN弹性系数c13/GPa9.0[26]
    c33/GPa10.7[26]
    β-Ga2O3晶格常数$ b_{\rm Ga_2O_3} $/Å3.037[14]
    β-Ga2O3质量密度ρ/(g·cm–3)5.88[38]
    β-Ga2O3声学形变势D/eV6.9[39]
    β-Ga2O3纵声学模速度ul/(m·s–1)6.8×103[39]
    β-Ga2O3电子有效质量m*0.28m0[40]
    β-Ga2O3高频介电常数$ {\varepsilon }_{\infty } $3.57[4143]
    β-Ga2O3低频介电常数$ {\varepsilon }_{\rm{s}} $10.2[4143]
    β-Ga2O3极性光学声子能量$ \hslash {\omega }_{\rm{P}\rm{O}}/\rm{m}\rm{e}\rm{V} $94 [44,45]
    下载: 导出CSV
  • [1]

    Green A J, Speck J, Xing G, et al. 2022 APL Mater. 10 029201Google Scholar

    [2]

    Ranga P, Bhattacharyya A, Chmielewski A, Roy S, Sun R, Scarpulla M A, Alem N, Krishnamoorthy S 2021 Appl. Phys. Express 14 025501Google Scholar

    [3]

    Wong M H, Bierwagen O, Kaplar R J, Umezawa H 2021 J. Mater. Res. 36 4601Google Scholar

    [4]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [5]

    Poncé S, Giustino F 2020 Phys. Rev. Res. 2 033102Google Scholar

    [6]

    Ghosh K, Singisetti U 2017 J. Appl. Phys. 122 035702Google Scholar

    [7]

    Nehate S, Saikumar A K, Sundaram K 2021 Crit. Rev. Solid State 47 538Google Scholar

    [8]

    Wang D P, Li J N, Jiao A N, Zhang X C, Lu X l, Ma X H, Hao Y 2021 J. Alloys Compd. 855 157296Google Scholar

    [9]

    Ranga P, Bhattacharyya A, Rishinaramangalam A, Ooi Y K, Scarpulla M A, Feezell D, Krishnamoorthy S 2020 Appl. Phys. Express 13 045501Google Scholar

    [10]

    Tadjer M J, Sasaki K, Wakimoto D, Anderson T J, Mastro M A, Gallagher J C, Jacobs A G, Mock A L, Koehler A D, Ebrish M, Hobart K D, Kuramata A 2021 J. Vac. Sci. Technol. 39 033402Google Scholar

    [11]

    Krishnamoorthy S, Xia Z, Joishi C, Zhang Y, McGlone J, Johnson J, Brenner M, Arehart A R, Hwang J, Lodha S, Rajan S 2017 Appl. Phys. Lett. 111 023502Google Scholar

    [12]

    Kalarickal N K, Xia Z B, McGlone J F, Liu Y M, Moore W, Arehart A R, Ringel S A, Rajan S 2020 J. Appl. Phys. 127 215706Google Scholar

    [13]

    Zhang Y W, Neal A, Xia Z B, Joishi C, Johnson J M, Zheng Y H, Bajaj S, Brenner M, Dorsey D, Chabak K, Jessen G, Hwang J, Mou S, Heremans J P, Rajan S 2018 Appl. Phys. Lett. 112 173502Google Scholar

    [14]

    Sun H D, Torres Castanedo C G, Liu K K, Li K H, Guo W Z, Lin R H, Liu X W, Li J T, Li X H 2017 Appl. Phys. Lett. 111 162105Google Scholar

    [15]

    Ho S T 2020 M. S. Dessertation (New York: Cornell University)

    [16]

    Yan P R, Zhang Z, Xu Y, Chen H, Chen D Z, Feng Q, Xu S R, Zhang Y C, Zhang J C, Zhang C F, Hao Y 2022 Vacuum 204 111381Google Scholar

    [17]

    Singh R, Lenka T R, Velpula R T, Jain B, Bui H Q T, Nguyen H P T 2021 Int. J. Numer. Model. El. 34 e2794Google Scholar

    [18]

    Song K, Zhang H C, Fu H Q, Yang C, Singh R, Zhao Y J, Sun H D, Long S B 2020 J. Phys. D Appl. Phys. 53 345107Google Scholar

    [19]

    Jiao W Y, Kong W, Li J C, Collar K, Kim T H, Losurdo M, Brown A S 2016 Appl. Phys. Lett. 109 082103Google Scholar

    [20]

    Yu C, Debdeep J 2007 Appl. Phys. Lett. 90 182112Google Scholar

    [21]

    Singh R, Lenka T R, Velpula R T, Jain B, Bui H Q T, Nguyen H P T 2020 J. Semicond. 41 102802Google Scholar

    [22]

    Gordon L, Miao M-S, Chowdhury S, Higashiwaki M, Mishra U K, van de Walle C G 2010 J. Phys. D: Appl. Phys. 43 505501Google Scholar

    [23]

    Goyal N, Iniguez B, Fjeldly T A 2013 AIP Conf. Proc. 1566 393Google Scholar

    [24]

    Goyal N, Fjeldly T A 2016 IEEE T. Electron Dev. 63 881Google Scholar

    [25]

    陈谦, 李群, 杨莺 2019 物理学报 68 017301Google Scholar

    Chen Q, Li Q, Yang Y 2019 Acta Phys. Sin. 68 017301Google Scholar

    [26]

    Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222Google Scholar

    [27]

    李群, 陈谦, 种景 2018 物理学报 67 027303Google Scholar

    Li Q, Chen Q, Chong J 2018 Acta Phys. Sin. 67 027303Google Scholar

    [28]

    张阳, 顾书林, 叶建东, 黄时敏, 顾然, 陈斌, 朱顺明, 郑有炓 2013 物理学报 62 150202Google Scholar

    Zhang Y, Gu S L, Ye J D, Huang S M, Gu R, Chen B, Zhu S M, Zhen Y D 2013 Acta Phys. Sin. 62 150202Google Scholar

    [29]

    Li Q, Zhang J W, Meng L, Hou X 2014 Phys. Status Solidi B 251 755Google Scholar

    [30]

    Li Q, Zhang J W, Zhang Z Y, Li F N, Hou X 2014 Semicond. Sci. Technol. 29 115001Google Scholar

    [31]

    Li Q, Zhang J W, Chong J, Hou X 2013 Appl. Phys. Express 6 121102Google Scholar

    [32]

    Kawamura T, Das Sarma S 1992 Phys. Rev., B: Condens. Matter. 45 3612Google Scholar

    [33]

    Goodnick S M, Ferry D K, Wilmsen C W 1985 Phys. Rev. B 32 8171Google Scholar

    [34]

    Gurusinghe M N, Davidsson S K, Andersson T G 2005 Phys. Rev. B 72 45316Google Scholar

    [35]

    Ishibashi A, Takeishi H, Mannoh M, Yabuuchi Y, Ban Y 1996 J. Electron. Mater. 25 799Google Scholar

    [36]

    Li J M, Wu J J, Han X X, Lu Y W, Liu X L, Zhu Q S, Wang Z G 2005 Semicond. Sci. Technol. 20 1207Google Scholar

    [37]

    Anderson D, Zakhleniuk N, Babiker M, Ridley B, Bennett C 2001 Phys. Rev. B 63 245313Google Scholar

    [38]

    Parisini, Antonella, Fornari, Roberto 2016 Semicond. Sci. Technol. 31 35023.1Google Scholar

    [39]

    Zhi G, Verma A, Wu X, Sun F, Hickman A, Masui T, Kuramata A, Higashiwaki M, Jena D, Luo T 2015 Appl. Phys. Lett. 106 591

    [40]

    Varley J B, Weber J R, Janotti A, Van d W, C. G. 2010 Appl. Phys. Lett. 108 142106Google Scholar

    [41]

    Passlack M, Hunt N, Schubert E F, Zydzik G J, Hong M, Mannaerts J P, Opila R L, Fischer R J 1994 Appl. Phys. Lett. 64 2715Google Scholar

    [42]

    Passlack M, Hong M, Schubert E F, Kwo J R, Mannaerts J P, Chu S, Moriya N, Thiel F A 1995 Appl. Phys. Lett. 66 625Google Scholar

    [43]

    Rebien M, Henrion W, Hong M, Mannaerts J P, Fleischer M 2002 Appl. Phys. Lett. 81 250Google Scholar

    [44]

    Rode D L 1970 Phys. Rev. B 2 1012Google Scholar

    [45]

    Liu B, Gu M, Liu X 2007 Appl. Phys. Lett. 91 172102Google Scholar

    [46]

    Fischer A, Kühne H, Richter H 1994 Phys. Rev. Lett. 73 2712Google Scholar

    [47]

    Sanchez A M, Pacheco F J, Molina S I, Stemmer J, Aderhold J, Graul J 2001 J. Electron. Mater. 30 L17Google Scholar

  • [1] 贺艳斌, 白熙. 一维线性非共轭石墨烯基(CH2)n分子链的电子输运. 物理学报, 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [2] 张雪冰, 刘乃漳, 姚若河. AlGaN/GaN高电子迁移率晶体管中二维电子气的极化光学声子散射. 物理学报, 2020, 69(15): 157303. doi: 10.7498/aps.69.20200250
    [3] 马嵩松, 舒天宇, 朱家旗, 李锴, 吴惠桢. Ⅳ-Ⅵ族化合物半导体异质结二维电子气研究进展. 物理学报, 2019, 68(16): 166801. doi: 10.7498/aps.68.20191074
    [4] 李群, 陈谦, 种景. InAlN/GaN异质结二维电子气波函数的变分法研究. 物理学报, 2018, 67(2): 027303. doi: 10.7498/aps.67.20171827
    [5] 王现彬, 赵正平, 冯志红. N极性GaN/AlGaN异质结二维电子气模拟. 物理学报, 2014, 63(8): 080202. doi: 10.7498/aps.63.080202
    [6] 张阳, 顾书林, 叶建东, 黄时敏, 顾然, 陈斌, 朱顺明, 郑有炓. ZnMgO/ZnO异质结构中二维电子气的研究. 物理学报, 2013, 62(15): 150202. doi: 10.7498/aps.62.150202
    [7] 董海明. 低温下二硫化钼电子迁移率研究. 物理学报, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [8] 王红培, 王广龙, 喻颖, 徐应强, 倪海桥, 牛智川, 高凤岐. 内嵌InAs量子点的δ掺杂GaAs/AlxGa1-xAs二维电子气特性分析. 物理学报, 2013, 62(20): 207303. doi: 10.7498/aps.62.207303
    [9] 胡飞, 段玲, 丁建文. 锯齿型石墨纳米带叠层复合结的电子输运. 物理学报, 2012, 61(7): 077201. doi: 10.7498/aps.61.077201
    [10] 骆杨, 段羽, 陈平, 臧春亮, 谢月, 赵毅, 刘式墉. 利用空间电荷限制电流方法确定三(8-羟基喹啉)铝的电子迁移率特性初步研究. 物理学报, 2012, 61(14): 147801. doi: 10.7498/aps.61.147801
    [11] 王威, 周文政, 韦尚江, 李小娟, 常志刚, 林铁, 商丽燕, 韩奎, 段俊熙, 唐宁, 沈波, 褚君浩. GaN/AlxGa1-xN异质结二维电子气的磁电阻研究. 物理学报, 2012, 61(23): 237302. doi: 10.7498/aps.61.237302
    [12] 张金风, 王平亚, 薛军帅, 周勇波, 张进成, 郝跃. 高电子迁移率晶格匹配InAlN/GaN材料研究. 物理学报, 2011, 60(11): 117305. doi: 10.7498/aps.60.117305
    [13] 王平亚, 张金风, 薛军帅, 周勇波, 张进成, 郝跃. 晶格匹配InAlN/GaN和InAlN/AlN/GaN材料二维电子气输运特性研究. 物理学报, 2011, 60(11): 117304. doi: 10.7498/aps.60.117304
    [14] 商丽燕, 林 铁, 周文政, 黄志明, 李东临, 高宏玲, 崔利杰, 曾一平, 郭少令, 褚君浩. In0.53Ga0.47As/In0.52Al0.48As量子阱中双子带占据的二维电子气的输运特性. 物理学报, 2008, 57(4): 2481-2485. doi: 10.7498/aps.57.2481
    [15] 高宏玲, 李东临, 周文政, 商丽燕, 王宝强, 朱战平, 曾一平. 不同量子阱宽度的InP基In0.53GaAs/In0.52AlAs高电子迁移率晶体管材料二维电子气的性能研究. 物理学报, 2007, 56(8): 4955-4959. doi: 10.7498/aps.56.4955
    [16] 周文政, 林 铁, 商丽燕, 黄志明, 崔利杰, 李东临, 高宏玲, 曾一平, 郭少令, 桂永胜, 褚君浩. InAlAs/InGaAs/InAlAs量子阱高迁移率二维电子气系统中的反弱局域效应研究. 物理学报, 2007, 56(7): 4099-4104. doi: 10.7498/aps.56.4099
    [17] 周忠堂, 郭丽伟, 邢志刚, 丁国建, 谭长林, 吕 力, 刘 建, 刘新宇, 贾海强, 陈 弘, 周均铭. AlGaN/AlN/GaN结构中二维电子气的输运特性. 物理学报, 2007, 56(10): 6013-6018. doi: 10.7498/aps.56.6013
    [18] 周文政, 林 铁, 商丽燕, 黄志明, 朱 博, 崔利杰, 高宏玲, 李东临, 郭少令, 桂永胜, 褚君浩. 双δ掺杂In0.65Ga0.35As/In0.52Al0.48As赝型高迁移率晶体管材料子带电子特性研究. 物理学报, 2007, 56(7): 4143-4147. doi: 10.7498/aps.56.4143
    [19] 朱 博, 桂永胜, 周文政, 商丽燕, 郭少令, 褚君浩, 吕 捷, 唐 宁, 沈 波, 张福甲. Al0.22Ga0.78N/GaN二维电子气中的弱局域和反弱局域效应. 物理学报, 2006, 55(5): 2498-2503. doi: 10.7498/aps.55.2498
    [20] 孔月婵, 郑有炓, 周春红, 邓永桢, 顾书林, 沈 波, 张 荣, 韩 平, 江若琏, 施 毅. AlGaN/GaN异质结构中极化与势垒层掺杂对二维电子气的影响. 物理学报, 2004, 53(7): 2320-2324. doi: 10.7498/aps.53.2320
计量
  • 文章访问数:  4415
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-29
  • 修回日期:  2022-09-28
  • 上网日期:  2022-10-19
  • 刊出日期:  2023-01-20

/

返回文章
返回