搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通用量子计算模型:一个资源理论的视角

王东升

引用本文:
Citation:

通用量子计算模型:一个资源理论的视角

王东升

Universal quantum computing models:a resource-theoretic study

Wang DongSheng
PDF
导出引用
  • 在近几十年,量子信息物理极大地促进了量子理论的现代发展,并在通信、计算、计量等方面展现了巨大的应用前景。其理论基础之一是通用量子计算模型理论,用于描述量子信息的演化特别是其大规模的应用,也是算法和纠错码等设计的基础。本文着重从物理的角度介绍近期在通用量子计算模型上的研究,结合量子资源理论对量子信息的刻画,发展了能统一描述不同计算模型的理论框架。研究发现,结合通用性和容错性的要求,可以构建模型的分类表,它包含上百种不同的通用量子计算方案,其中多数尚未得到深入研究。本文重点讨论了在通用性方面即针对信息不同表示形式的四个家族的模型,其中一类模型是近期提出的量子冯诺依曼架构,它可以绕开在量子程序存储和量子控制单元上的不可能定理,从而构建可量子编程的计算机体系.本文也探讨了量子芯片与算法设计、量子资源与优势等问题。本研究展现了通用量子计算模型研究的丰富性和复杂性,也为量子计算机的建造和量子信息的应用提供了更多的可能。
    Quantum computing has been proven to be powerful, however, there are still great challenges for building real quantum computers due to the requirements of both fault-tolerance and universality. People still lack a systematic way to design fast quantum algorithms and identify the key quantum resources. In this work, we develop a resource-theoretic approach to characterize universal quantum computing models and the universal resources for quantum computing.
    Our theory combines the framework of universal quantum computing model (UQCM) and the quantum resource theory (QRT). The former has played major roles in quantum computing, while the later was developed mainly for quantum information theory. Putting them together proves to be 'win-win': on one hand, using QRT can provide a resource-theoretic characterization of a UQCM, the relation among models and inspire new ones, and on the other hand, using UQCM offers a framework to apply resources, study relation among resources and classify them.
    In quantum theory, we mainly study states, evolution, observable, and probability from measurements, and this motivates the introduction of different families of UQCMs. A family also includes generations depending on a hierarchical structure of resource theories. We introduce a table of UQCMs by first classifying two categories of models: one referring to the format of information, and one referring to the logical evolution of information requiring quantum error-correction codes. Each category contains a few families of models, leading to more than one hundred of them in total. Such a rich spectrum of models include some well-known ones that people use, such as the circuit model, the adiabatic model, but many of them are relatively new and worthy of more study in the future. Among them are the models of quantum von Neumann architectures established recently. This type of architecture or model circumvents the no-go theorems on both the quantum program storage and quantum control unit, enabling the construction of more complete quantum computer systems and high-level programming.
    Correspondingly, each model is captured by a unique quantum resource. For instance, in the state family, the universal resource for the circuit model is coherence, for the local quantum Turing machine is bipartite entanglement, and for the cluster-state based, also known as measurement-based model is a specific type of entanglement relevant to symmetry-protected topological order. As program-storage is a central feature of the quantum von Neumann architecture, we find the quantum resources for it are quantum memories, which are dynamical resources closely related to entanglement. In other words, our classification of UQCMs also serves as a computational classification of quantum resources. This can be used to resolve the dispute over the computing power of resources, such as interference, entanglement, or contextuality. In all, we believe our theory lays down a solid framework to study computing models, resources, and design algorithms.
  • [1]

    Preskill J 2018 Quantum 2 79

    [2]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge U.K.: Cambridge University Press)

    [3]

    Pan J W 2024 Acta Phys. Sin. 73 010301

    [4]

    Bell J S 1966 Rev. Mod. Phys. 38 447

    [5]

    Kraus K 1983 States, Effects, and Operations: Fundamental Notions of Quantum Theory, vol. 190 of Lecture Notes in Physics (Berlin: Springer-Verlag)

    [6]

    Holevo A S 1982 Probabilistic and Statistical Aspect of Quantum Theory (North-Holland, Amsterdam)

    [7]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467

    [8]

    Deutsch D 1985 In Proc. R. Soc. (London), Ser. A, vol. 400 (The Royal Society), pp 97–117

    [9]

    Yao A C C 1993 In Foundations of Computer Science, 1993. Proceedings., 34th Annual Symposium on (IEEE), pp 352–361

    [10]

    Bernstein E, Vazirani U 1997 SIAM J. Comput. 26 1411

    [11]

    Shor P W 1994 In Proceedings 35th annual symposium on foundations of computer science (IEEE), pp 124–134

    [12]

    Harris D M, Harris S L 2013 Digital design and computer architecture (Elsevier)

    [13]

    Shannon C 1948 The Bell System Technical Journal 27 379

    [14]

    von Neumann J 1993 IEEE Annals of the History of Computing 15 27

    [15]

    Lidar D, Brun T A, editors 2013 Quantum error correction (Cambridge University Press)

    [16]

    Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’ Brien J L 2010 Nature 464 45

    [17]

    Grover L K 1996 In Proceedings of the twenty-eighth annual ACM Symposium on Theory of Computing

    [18]

    Harrow A W, Hassidim A, Lloyd S 2009 Phys. Rev. Lett.103 150502

    [19]

    Long G L 2011 Int. J. Theor. Phys. 50 1305

    [20]

    Martyn J M, Rossi Z M, Tan A K, Chuang I L 2021 PRX Quantum 2 040203

    [21]

    Watrous J 2018 The Theory of Quantum Information (Cambridge University Press)

    [22]

    Hayashi M 2017 Quantum Information Theory: Mathematical Foundation, 2nd edition (Springer)

    [23]

    Wilde M 2017 Quantum Information Theory (Cambridge University Press)

    [24]

    Chitambar E, Gour G 2019 Rev. Mod. Phys. 91 025001

    [25]

    Wang D S 2023 Commun. Theor. Phys. 75 125101

    [26]

    Albash T, Lidar D A 2018 Rev. Mod. Phys. 90 015002

    [27]

    Nayak C, Simon S H, Stern A, Freedman M, Sarma S D 2008 Rev. Mod. Phys. 80 1083

    [28]

    Childs A M, Gosset D, Webb Z 2013 Science 339 791

    [29]

    Arrighi P 2019 Natural Computing 18 885

    [30]

    Briegel H J, Browne D E, Dür W, Raussendorf R, Van den Nest M 2009 Nat. Phys. 5 19

    [31]

    Barenco A, Bennett C H, Cleve R, DiVincenzo D P, Margolus N, Shor P, Sleator T, Smolin J A, Weinfurter H 1995 Phys. Rev. A 52 3457

    [32]

    DiVincenzo D P 2000. ArXiv:quant-ph/0002077

    [33]

    Nielsen M A, Chuang I L 1997 Phys. Rev. Lett. 79 321

    [34]

    Yang Y, Renner R, Chiribella G 2020 Phys. Rev. Lett. 125 210501

    [35]

    Wang D S 2022 Commun. Theor. Phys. 74 095103

    [36]

    Dawson C M, Nielsen M A 2006 Quantum Inf. Comput. 6 81

    [37]

    Lloyd S 1996 Science 273 1073

    [38]

    Brassard G, Høyer P, Mosca M, Tapp A 2002 Contem. Mathemat. 305 53–74

    [39]

    Knill E, Laflamme R 1997 Phys. Rev. A 55 900

    [40]

    Chiribella G, D’Ariano G M, Perinotti P 2008 Europhys. Lett. 83 30004

    [41]

    Chiribella G, D’Ariano G M, Perinotti P 2008 Phys. Rev.Lett. 101 060401

    [42]

    Chiribella G, D’Ariano G M, Perinotti P 2009 Phys. Rev.A 80 022339

    [43]

    Choi M D 1975 Linear Algebra Appl. 10 285

    [44]

    Bény C, Oreshkov O 2010 Phys. Rev. Lett. 104 120501

    [45]

    Gottesman D 1998 Phys. Rev. A 57 127

    [46]

    Wang D S, Zhu G, Okay C, Laflamme R 2020 Phys. Rev.Res. 2 033116

    [47]

    Wang D S, Wang Y J, Cao N, Zeng B, Laflamme R 2022 New J. Phys. 24 023019

    [48]

    Zhou S, Liu Z W, Jiang L 2021 Quantum 5 521

    [49]

    Yang Y, Mo Y, Renes J M, Chiribella G, Woods M P 2022 Phys. Rev. Res. 4 023107

    [50]

    Kubica A, Demkowicz-Dobrzański R 2021 Phys. Rev. Lett. 126 150503

    [51]

    Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 82 2417

    [52]

    Kitaev A Y 2003 Ann. Phys. 303 2

    [53]

    Ryan W E, Lin S 2009 Channel Codes: Classical and Modern (Cambridge University Press)

    [54]

    Breuckmann N P, Eberhardt J N 2021 PRX Quantum 2 040101

    [55]

    Wang D S, Liu Y D, Wang Y J, Luo S 2024 Phys. Rev. A 110 032413

    [56]

    Coecke B, Fritz T, Spekkens R W 2016 Information and Computation 250 59

    [57]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [58]

    Streltsov A, Adesso G, Plenio M B 2017 Rev. Mod. Phys. 89 041003

    [59]

    Wang D S 2021 Quantum Engineering 2 e85

    [60]

    Wang D S 2020 Quant. Infor. Comput. 20 0213

    [61]

    Raussendorf R, Briegel H J 2001 Phys. Rev. Lett. 86 5188

    [62]

    Nielsen M A 2006 Reports on Math. Phys. 57 147

    [63]

    Wang D S, Stephen D T, Raussendorf R 2017 Phys. Rev. A 95 032312

    [64]

    Stephen D T, Wang D S, Prakash A, Wei T C, Raussendorf R 2017 Phys. Rev. Lett. 119 010504

    [65]

    Raussendorf R, Okay C, Wang D S, Stephen D T, Nautrup H P 2019 Phys. Rev. Lett. 122 090501

    [66]

    Molina A, Watrous J 2019 Proc. Royal Soc. A 475 20180767

    [67]

    Paetznick A, Reichardt B W 2013 Phys. Rev. Lett. 111 090505

    [68]

    Tóth G, Apellaniz I 2014 J. Phys. A: Math. Theor. 47 424006

    [69]

    Affleck I, Kennedy T, Lieb E H, Tasaki H 1987 Phys. Rev. Lett. 59 799

    [70]

    Fannes M, Nachtergaele B, Werner R F 1992 Commun. Math. Phys. 144 443

    [71]

    Perez-Garcia D, Verstraete F, Wolf M, Cirac J 2007 Quantum Inf. Comput. 7 401

    [72]

    Sarovar M, Proctor T, Rudinger K, Young K, Nielsen E, Blume-Kohout R 2020 Quantum 4 321

    [73]

    Crépeau C, Gottesman D, Smith A 2002 In STOC ’ 02: Proc. 34rd Annual ACM Symp. Theory of Computing.p 643

    [74]

    Broadbent A, Fitzsimons J, Kashefi E 2009 In Proceedings of the 50th Annual Symposium on Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, 2009). pp 517–527

    [75]

    Myers J M 1997 Phys. Rev. Lett. 78 1823

    [76]

    Cirac J I, Pérez-García D, Schuch N, Verstraete F 2021 Rev. Mod. Phys. 93 045003

    [77]

    Wehner S, Elkouss D, Hanson R 2018 Science 362 303

    [78]

    Wang D S 2019 Int. J. Mod. Phys. B 33 1930004

    [79]

    Wang D S 2020 Phys. Rev. A 101 052311

    [80]

    Van den Nest M, Dür W, Vidal G, Briegel H J 2007 Phys. Rev. A 75 012337

    [81]

    Van den Nest M, Dür W, Miyake A, Briegel H J 2007 New J. Phys. 9 204

    [82]

    Gross D, Flammia S T, Eisert J 2009 Phys. Rev. Lett. 102 190501

    [83]

    Bremner M J, Mora C, Winter A 2009 Phys. Rev. Lett. 102 190502

    [84]

    Gu Z C, Wen X G 2009 Phys. Rev. B 80 155131

    [85]

    Chen X, Gu Z C, Wen X G 2011 Phys. Rev. B 83 035107

    [86]

    Schuch N, Pérez-García D, Cirac I 2011 Phys. Rev. B 84 165139

    [87]

    Bartolucci S, Birchall P, Bombin H, Cable H, Dawson C, Gimeno-Segovia M, Johnston E, Kieling K, Nickerson N, Pant M, Pastawski F, Rudolph T, Sparrow C 2023 Nat. Commun. 14 912

    [88]

    Kitaev A, Shen A H, Vyalyi M N 2002 Classical and Quantum Computation, vol. 47 of Graduate Studies in Mathematics (Providence: American Mathematical Society)

    [89]

    Wocjan P, Roetteler M, Janzing D, Beth T 2002 Quant. Infor. Comput. 2 133

    [90]

    Dodd J L, Nielsen M A, Bremner M J, Thew R T 2002 Phys. Rev. A 65 040301

    [91]

    Cubitt T S, Montanaro A, Piddock S 2018 Proceedings of the National Academy of Sciences 115 9497

    [92]

    Kohler T, Piddock S, Bausch J, Cubitt T 2021 Ann. Henri Poincaré 23 223–254

    [93]

    Kohler T, Piddock S, Bausch J, Cubitt T 2022 PRX Quantum 3 010308

    [94]

    Berry D W, Ahokas G, Cleve R, Sanders B C 2007 Commun. Math. Phys. 270 359

    [95]

    Cirac J I, Zoller P 2012 Nat. Phys. 8 264

    [96]

    Shepherd D J, Franz T, Werner R F 2006 Phys. Rev. Lett. 97 020502

    [97]

    Janzing D 2007 Phys. Rev. A 75 012307

    [98]

    Nagaj D, Wocjan P 2008 Phys. Rev. A 78 032311

    [99]

    Nagaj D 2012 Phys. Rev. A 85 032330

    [100]

    Lloyd S, Terhal B 2016 New J. Phys. 18 023042

    [101]

    Toffoli T, Margolus N 1987 Cellular Automata Machines: A new environment for modeling (MIT Press)

    [102]

    Bisio A, D’ Ariano G M, Tosini A 2015 Ann. Phys. 354 244

    [103]

    Heim B, Rønnow T F, Isakov S V, Troyer M 2015 Science 348 215

    [104]

    Villanueva A, Najafi P, Kappen H J 2023 J. Phys. A: Math. Theor. 56 465304

    [105]

    Bravyi S, DiVincenzo D P, Oliveira R I, Terhal B M 2008 Quantum Infor. Comput. 8 0361

    [106]

    Zhang J, Kyaw T H, Filipp S, Kwek L C, Sjöqvist E, Tong D 2023 Phys. Reports 1027 1

    [107]

    Wootters W K 1987 Ann. Phys. 176 1

    [108]

    Gross D 2006 J. Math. Phys. 47 122107

    [109]

    Bravyi S, Kitaev A 2005 Phys. Rev. A 71 022316

    [110]

    Popescu S, Rohrlich D 1994 Found. Phys. 24 379

    [111]

    Spekkens R W 2008 Phys. Rev. Lett. 101 020401

    [112]

    Spekkens R W 2005 Phys. Rev. A 71 052108

    [113]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [114]

    Gottesman D, Chuang I L 1999 Nature 402 390

    [115]

    Long G L 2006 Commun. Theor. Phys. 45 825

    [116]

    Childs A M, Wiebe N 2012 Quant. Infor. Comput. 12 901

    [117]

    Berry D W, Childs A M, Cleve R, Kothari R, Somma R D 2015 Phys. Rev. Lett. 114 090502

    [118]

    Wei S, Long G L 2016 Quantum Infor. Processing 15 1189

    [119]

    Zhou X, Leung D W, Chuang I L 2000 Phys. Rev. A 62 052316

    [120]

    Broadbent A 2016 Phys. Rev. A 94 022318

    [121]

    Clauser J F, Horne M A, Shimony A, Holt R A 1969 Phys. Rev. Lett. 23 880

    [122]

    Vaidman L 2003 Phys. Rev. Lett. 90 010402

    [123]

    Brassard G, Buhrman H, Linden N, Méthot A A, Tapp A, Unger F 2006 Phys. Rev. Lett. 96 250401

    [124]

    Chitambar E, Leung D, Mančinska L, Ozols M, Winter A 2014 Commun. Math. Phys. 328 303

    [125]

    Bennett C H, DiVincenzo D P, Smolin J A 1997 Phys. Rev. Lett. 78 3217

    [126]

    Gheorghiu A, Kapourniotis T, Kashefi E 2019 Theory of Computing Systems 63 715–808

    [127]

    Wang D S 2024 Chin. Phys. B 33 080302

    [128]

    Horodecki M, Shor P, Ruskai M B 2003 Rev. Math. Phys. 15 629

    [129]

    Rosset D, Buscemi F, Liang Y C 2018 Phys. Rev. X 8 021033

    [130]

    Li L, Hall M J W, Wiseman H M 2018 Phys. Reports 759 1

    [131]

    Eastin B, Knill E 2009 Phys. Rev. Lett. 102 110502

    [132]

    Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89 035002

    [133]

    Yoder T J, Takagi R, Chuang I L 2016 Phys. Rev. X 6 031039

    [134]

    Zeng B, Chen X, Zhou D L, Wen X G 2019 Quantum Information Meets Quantum Matter (Springer-Verlag New York)

    [135]

    Koenig R, Kuperberg G, Reichardt B W 2010 Ann. Phys. 325 2707

    [136]

    Brown B J, Loss D, Pachos J K, Self C N, Wootton J R 2016 Rev. Mod. Phys. 88 045005

    [137]

    Sarma S D, Freedman M, Nayak C 2015 npj Quantum Information 1 15001

    [138]

    Harper F, Roy R, Rudner M S, Sondhi S L 2020 Ann. Rev. Condensed Matter Phys. 11 345

    [139]

    Khodjasteh K, Lidar D A 2008 Phys. Rev. A 78 012355

    [140]

    Verstraete F, Wolf M M, Cirac J I 2009 Nat. Phys. 5 633

    [141]

    Anderson J T, Duclos-Cianci G, Poulin D 2014 Phys. Rev. Lett. 113 080501

    [142]

    Liu Y T, Wang K, Liu Y D, Wang D S 2023 Entropy 25 1187

    [143]

    Araujo M, Feix A, Costa F, Brukner C 2014 New J. Phys. 16 093026

    [144]

    Bengtsson I, Życzkowski K 2006 Geometry of Quantum States (Cambridge U.K.: Cambridge University Press)

    [145]

    Wang K, Wang D S 2023 New J. Phys. 25 043013

    [146]

    Bennett C H, Brassard G 1984 In Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (Bangalore, India, (IEEE, New York)),p 175–179

    [147]

    Morris J, Saggio V, Gocanin A, Dakic B 2022 Adv. Quantum Technol. 5 2100118

    [148]

    Huang H L, Wu D, Fan D, Zhu X 2020 Sci. China Inf. Sci. 63 180501

    [149]

    Wang J, Sciarrino F, Laing A, Thompson M G 2020 Nat. Photonics 14 273–284

    [150]

    Editorial 2022 Nat. Rev. Phys. 4 1

    [151]

    Ma Y, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2021 Nat. Commun. 12 2381

    [152]

    Chiribella G, D’Ariano G M, Perinotti P 2008 Phys. Rev. Lett. 101 180501

    [153]

    Gutoski G, Watrous J 2007 In Proceedings of the 39th ACM Symposium on Theory of Computing.p 565574

    [154]

    Mehta P, Bukov M, Wang C H, Day A G R, Richardson C, Fisher C K, Schwab D J 2019 Phys. Reports 810 1

    [155]

    Lim D, Doriguello J F, Rebentrost P 2023. ArXiv:quantph/2304.02262

    [156]

    Dunjko V, Briegel H J 2018 Rep. Prog. Phys. 81 074001

    [157]

    Verdon G, Pye J, Broughton M 2018. ArXiv:quantph/1806.09729

    [158]

    Benedetti M, Lloyd E, Sack S, Fiorentini M 2019 Quantum Science and Technology 4 043001

    [159]

    Huang H Y, Kueng R, Preskill J 2021 Phys. Rev. Lett. 126 190505

    [160]

    Caro M C 2024 ACM Trans. Quantum Comput. 5 2

    [161]

    Cleve R, Ekert A, Macchiavello C, Mosca M 1998 Proc. R. Soc. (London), Ser. A 454 339

    [162]

    Jozsa R, Linden N 2003 Proc. R. Soc. (London), Ser. A 459 2011

    [163]

    Steane A M 2003 Studies in History and Philosophy of Modern Physics 34 469

    [164]

    Van den Nest M 2013 Phys. Rev. Lett. 110 060504

    [165]

    Howard M, Wallman J, Veitch V, Emerson J 2014 Nature 510 351"

    [166]

    Giovannetti V, Maccone L, Morimae T, Rudolph T G 2013 Phys. Rev. Lett. 111 230501

    [167]

    Holevo A S 1977 Rep. Math. Phys. 12 273

    [168]

    Tajima H, Shiraishi N, Saito K 2018 Phys. Rev. Lett. 121 110403

    [169]

    Chiribella G, Yang Y, Renner R 2021 Phys. Rev. X 11 021014

    [170]

    Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621

    [171]

    Xu K, Fan H 2022 Chin. Phys. B 31 100304

    [172]

    Emerson J, Weinstein Y S, Saraceno M, Lloyd S, Cory D G 2003 Science 302 2098

    [173]

    Qin D, Xu X, Li Y 2022 Chin. Phys. B 31 090306

    [174]

    Smith G, Yard J 2008 Science 321 1812

    [175]

    Sauerwein D, Wallach N R, Gour G, Kraus B 2018 Phys. Rev. X 8 031020

    [176]

    Google Quantum AI and Collaborators 2024. ArXiv preprint arXiv:2408.13687

  • [1] 李天胤, 邢宏喜, 张旦波. 基于量子计算的高能核物理研究. 物理学报, doi: 10.7498/aps.72.20230907
    [2] 朱佳莉, 曹原, 张春辉, 王琴. 实用化量子密钥分发光网络中的资源优化配置. 物理学报, doi: 10.7498/aps.72.20221661
    [3] 范桁. 量子计算纠错取得突破性进展. 物理学报, doi: 10.7498/aps.72.20230330
    [4] 周文豪, 王耀, 翁文康, 金贤敏. 集成光量子计算的研究进展. 物理学报, doi: 10.7498/aps.71.20221782
    [5] 陈以鹏, 刘靖阳, 朱佳莉, 方伟, 王琴. 机器学习在量子通信资源优化配置中的应用. 物理学报, doi: 10.7498/aps.71.20220871
    [6] 王美红, 郝树宏, 秦忠忠, 苏晓龙. 连续变量量子计算和量子纠错研究进展. 物理学报, doi: 10.7498/aps.71.20220635
    [7] 陈子杰, 潘啸轩, 华子越, 王韦婷, 马雨玮, 李明, 邹旭波, 孙麓岩, 邹长铃. 基于超导量子系统的量子纠错研究进展. 物理学报, doi: 10.7498/aps.71.20221824
    [8] 张诗豪, 张向东, 李绿周. 基于测量的量子计算研究进展. 物理学报, doi: 10.7498/aps.70.20210923
    [9] 李保民, 胡明亮, 范桁. 量子相干. 物理学报, doi: 10.7498/aps.68.20181779
    [10] 李文涛, 于文涛, 姚明海. 采用量子含时波包方法研究H/D+Li2LiH/LiD+Li反应. 物理学报, doi: 10.7498/aps.67.20180324
    [11] 范桁. 量子计算与量子模拟. 物理学报, doi: 10.7498/aps.67.20180710
    [12] 贺志, 李莉, 姚春梅, 李艳. 利用量子相干性判定开放二能级系统中非马尔可夫性. 物理学报, doi: 10.7498/aps.64.140302
    [13] 段志欣, 邱明辉, 姚翠霞. 采用量子波包方法和准经典轨线方法研究S(3P)+HD反应. 物理学报, doi: 10.7498/aps.63.063402
    [14] 赵峰. 单向量子密钥纠错协议的纠错性能仿真分析. 物理学报, doi: 10.7498/aps.62.200303
    [15] 赵顾颢, 赵尚弘, 幺周石, 蒙文, 王翔, 朱子行, 刘丰. 基于偏振编码的副载波复用量子密钥分发研究. 物理学报, doi: 10.7498/aps.61.240306
    [16] 刘晓静, 张佰军, 李海波, 刘兵, 张春丽, 郭义庆, 张丙新. 应用量子理论方法研究中子双缝衍射. 物理学报, doi: 10.7498/aps.59.4117
    [17] 祝敬敏, 王顺金. 运用量子约束动力学对具有耗散的量子位的追踪控制. 物理学报, doi: 10.7498/aps.55.5018
    [18] 陈明伦, 王顺金. 用激光-二能级原子系统实现一位通用量子逻辑门. 物理学报, doi: 10.7498/aps.55.4638
    [19] 严晓波, 王顺金. 由各向异性海森伯自旋环链组成的量子位及其通用量子逻辑门. 物理学报, doi: 10.7498/aps.55.1591
    [20] 韩亦文. 用量子隧穿法研究带质量四极矩静态黑洞的Hawking辐射. 物理学报, doi: 10.7498/aps.54.5018
计量
  • 文章访问数:  46
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-10-16

/

返回文章
返回