搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

实用化量子密钥分发光网络中的资源优化配置

朱佳莉 曹原 张春辉 王琴

引用本文:
Citation:

实用化量子密钥分发光网络中的资源优化配置

朱佳莉, 曹原, 张春辉, 王琴

Optimal resource allocation in practical quantum key distribution optical networks

Zhu Jia-Li, Cao Yuan, Zhang Chun-Hui, Wang Qin
PDF
HTML
导出引用
  • 在大规模量子通信网络应用研究中, 人们一般通过构建虚拟业务网络并将其映射到实际物理空间来实现资源的分配. 在该映射过程中, 为简化模型常常做一些假设, 比如假定物理拓扑中的密钥资源为某一固定值, 即忽略实际物理条件以及不同协议对密钥供给带来的性能差异. 这种忽略实际物理条件的假设可能导致该网络在实际应用中无法正常运行. 为解决以上问题, 本文从链路映射的角度出发, 以量子密钥分发光网络为底层网络, 提出了改进的虚拟业务映射模型和虚拟业务映射算法, 使其更加接近于实际应用场景. 一方面通过增加地理位置的约束, 对虚拟节点到可映射的物理节点范围做合理限制; 另一方面, 从硬件成本和实际密钥生成速率角度出发, 提出了性价比的评估指标对资源进行分配管理. 此外, 我们通过结合3种主流的量子密钥分发协议(BB84、测量设备无关、双场), 构建了普适的虚拟业务在量子密钥分发光网络中的映射模型, 实现了最优协议的推荐和资源的优化配置管理.
    In the application research of large-scale quantum communication network, one generally realizes resource allocation by constructing virtual service network and mapping it to actual physical space. In this mapping process, some assumptions are often made to simplify the model. For example, the key resource in the physical topology is assumed to be a fixed value, that is, the actual physical conditions and the performance differences of key supply caused by different protocols are ignored. This assumption may lead the network to fail to run appropriately in practical applications. In order to solve the above problems, from the perspective of link mapping, this paper proposes an improved virtual service mapping model and virtual service mapping algorithm with the quantum key distribution optical network as the underlying network, which makes it closer to the actual application scenario. On the one hand, by increasing the constraints of geographical location, the range from virtual nodes to the mappable physical nodes is reasonably restricted. On the other hand, from the perspective of hardware cost and actual key generation rate, the cost performance evaluation index is proposed to allocate and manage resources. In addition, by combining three mainstream quantum key distribution protocols (BB84, measurement-device-independent, and twin-field), we construct a universal virtual service mapping model in the quantum key distribution optical network, and realize the recommendation of the optimal protocol and the optimal allocation and management of resources.
      通信作者: 王琴, qinw@njupt.edu.cn
    • 基金项目: 国家重点研究发展计划 (批准号: 2018YFA0306400)、国家自然科学基金 (批准号: 12074194, 12104240, 62201276)、江苏省重点研发计划产业前瞻与关键核心技术项目(批准号: BE2022071)、江苏省自然科学基金(批准号: BK20192001, BK20210582)、江苏省高等学校自然科学研究项目(批准号: 22KJB510007)和南京邮电大学自然科学基金(批准号: NY220123)资助的课题.
      Corresponding author: Wang Qin, qinw@njupt.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018 YFA0306400), the National Natural Science Foundation of China (Grant Nos. 12074194, 12104240, 62201276), the Industry Foresight and Key Core Technology Project of Key R&D Plan of Jiangsu Province, China (Grant No. BE2022071), the Jiangsu Natural Science Foundation, China (Grant Nos. BK20192001, BK20210582), the Natural Science Research Project of Jiangsu Higher Education Institutions, China (Grant No. 22KJB510007), and the Natural Science Foundation of Nanjing University of Posts and Telecommunications, China (Grant No. NY220123).
    [1]

    Lin R P, Luo S, Zhou J W, Wang S, Cai A L, Zhong W D, Moshe Z 2018 J. Lightwave Technol. 36 3551Google Scholar

    [2]

    Jiang H H, Wang Y X, Gong L, Zhu Z Q 2015 J. Opt. Commun. Netw. 7 1160Google Scholar

    [3]

    Gong L, Zhu Z 2013 J. Lightwave Technol. 32 450Google Scholar

    [4]

    Jarray A, Karmouch A 2014 IEEE/ACM Trans. Netw. 23 1012Google Scholar

    [5]

    Botero J F, Hesselbach X, Fischer A, Hermann D M 2012 Telecommun. Syst. 51 273Google Scholar

    [6]

    王妍 2020 硕士学位论文(北京: 北京邮电大学)

    Wang Y 2020 M. S. Dessertation (Beijing: Beijing University of Posts and Telecommunications ) (in Chinese)

    [7]

    Zeng P, Zhou H Y, Wu W J, Ma X F 2022 Nat. Commun. 13 1Google Scholar

    [8]

    Zhou X Y, Zhang C H, Zhang C M, Wang Q 2019 Phys. Rev. A 99 062316Google Scholar

    [9]

    Mao Y Q, Wang B X, Zhao C X, Wang G Q, Wang R C, Wang H H, Zhou F, Nie J M, Chen Q, Zhao Y, Zhang Q, Zhang J, Chen T Y, Pan J W 2018 Opt. Express 26 6010Google Scholar

    [10]

    王鹏辉, 张宁, 肖明明 2019 计算机工程与应用 55 106Google Scholar

    Wang P H, Zhang N, Xiao M M 2019 Comput. Eng. Appl. 55 106Google Scholar

    [11]

    Gottesman D, Lo H K, Lutkenhaus N, Preskill J 2004 Quantum Inf. Comput. 4 325Google Scholar

    [12]

    朱凤丹 2016 硕士学位论文 (南京: 南京邮电大学)

    Zhu F D 2016 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese)

    [13]

    Zhou Y H, Yu Z W, Wang X B 2016 Phys. Rev. A 93 042324Google Scholar

    [14]

    Xu H, Yu Z W, Jiang C, Hu X L, Wang X B 2020 Phys. Rev. A 101 042330Google Scholar

    [15]

    Cao Y, Zhao Y L, Wang Q, Zhang J, Ng S X, Hanzo L 2022 IEEE Commun. Surv. Tut. 24 839Google Scholar

    [16]

    赵礼峰, 黄奕雯 2017 计算机技术与发展 27 98Google Scholar

    Zhao L F, Huang Y W 2017 Comput. Technol. Dev. 27 98Google Scholar

    [17]

    Xu F, Xu H, Lo H K 2014 Phys. Rev. A. 89 052333Google Scholar

    [18]

    Yin H L, Chen T Y, Yu Z W, Liu H, You L X, Zhou Y H, Chen S J, Mao M Q, Huang M Q, Zhang W J, Chen H, Li M J, Nolan D, Zhou F, Jiang X, Wang Z, Zhang Q, Wang X B, Pan J W 2016 Phys. Rev. Lett. 117 190501Google Scholar

    [19]

    Liu Y, Yu Z W, Zhang W J, Guan J Y, Chen J P, Zhang C, Hu X L, Li H, Jiang C, Lin J, Chen T Y, You L X, Wang Z, Wang X B, Zhang Q, Pan J W 2019 Phys. Rev. Lett. 123 100505Google Scholar

  • 图 1  USNET拓扑图

    Fig. 1.  USNET topological graph.

    图 2  可信中继原理图

    Fig. 2.  Schematic diagram of trusted relay.

    图 3  虚拟业务映射模型

    Fig. 3.  Virtual service mapping model.

    图 4  虚拟节点映射到每个物理节点上的次数

    Fig. 4.  The number of times the virtual nodes are mapped to each physical node.

    图 5  3种协议密钥产生速率随距离变化曲线图

    Fig. 5.  Plot of key generation rate of three protocols versus distance.

    图 6  (a)采用BB84协议时不同距离下中继数量与性价比关系图; (b)采用MDI协议时不同距离下中继数量与性价比关系图; (c)采用TF协议时不同距离下中继数量与性价比关系图

    Fig. 6.  (a) Plot of relay number and cost performance at different distances with BB84 protocol; (b) plot of relay number and cost performance at different distances with measurement-device-independent protocol; (c) plot of relay number and cost performance at different distances with two-field protocol.

    图 7  (a)中继距离(0—300 km)时性价比关系对比图; (b)中继距离(150—300 km)时性价比关系对比图

    Fig. 7.  (a) Cost performance-price ratio for relay distance (0–300 km); (b) cost performance-price ratio for relay distance (150–300 km).

    图 8  业务阻塞率随业务到达速率变化曲线

    Fig. 8.  Curve of traffic blocking probability versus traffic arrival rate.

    图 9  密钥利用率随业务到达速率变化曲线

    Fig. 9.  Curve of the key resource utilization versus traffic arrival rate.

    图 10  每条物理链路的密钥利用率

    Fig. 10.  Key utilization for each physical link.

    表 1  虚拟节点可映射范围求解算法

    Table 1.  Mapping range solving algorithm for the virtual nodes.

     输入 虚拟节点$ {v}_{i}^{\rm{v}} $, 物理节点$ {v}_{i}^{\rm{p}} $, 物理网络
        ${G}^{\rm{p} }\left({V}^{\rm{p} },\; {L}^{\rm{p} },\; {BW}^{\rm{p} },\; {K}^{\rm{p} }\right)$
     输出 虚拟节点${v}_{i}^{{\rm{v}}}$可映射的物理节点范围${D}_{i}^{{\rm{v}}}$
      1 For 每个虚拟节点$ {v}_{i}^{\rm{v}} $ do
      2 随机生成一个相应的物理节点$ {v}_{i}^{\rm{p}} $
      3 End for
      4 For 每个物理节点$ {v}_{i}^{\rm{p}} $ do
      5 根据USNET网络拓扑图得出与每个物理节点直
    接相连的节点
      6 将物理节点$ {v}_{i}^{\rm{p}} $和与其直接相连的节点, 记为$ {D}_{i}^{\rm{v}} $
      7 End for
      8 每个虚拟节点$ {v}_{i}^{\rm{v}} $可映射的物理节点范围为$ {D}_{i}^{\rm{v}} $
    下载: 导出CSV

    表 2  每个虚拟节点可映射的物理节点范围

    Table 2.  The range of physical nodes that can be mapped to each virtual node.

    随机生成物理节点可映射物理节点范围随机生成物理节点可映射物理节点范围随机生成物理节点可映射物理节点范围
    11, 2, 699, 6, 7, 10, 11, 121717, 13, 16, 18, 22, 23
    22, 1, 3, 61010, 8, 9, 13, 141818, 14, 17, 24
    33, 2, 4, 5, 71111, 6, 9, 12, 15, 191919, 11, 20
    44, 3, 5, 71212, 9, 11, 13, 162020, 15, 19, 21
    55, 3, 4, 81313, 10, 12, 14, 172121, 16, 20, 22
    66, 1, 2, 7, 9, 111414, 10, 13, 182222, 16, 17, 21, 23
    77, 3, 4, 6, 8, 91515, 11, 16, 202323, 17, 22, 24
    88, 5, 7, 101616, 12, 15, 17, 21, 222424, 18, 23
    下载: 导出CSV

    表 3  仿真参数

    Table 3.  Simulation parameters

    α/(dB·km–1)$ {e}_{\rm{d}\rm{e}\rm{t}\rm{e}\rm{c}\rm{t}\rm{o}\rm{r}} $$ {Y}_{0} $$ {\eta }_{\rm{B}\rm{o}\rm{b}} $$ f/\rm{M}\rm{H}\rm{z} $
    0.20.015$ {10}^{-8} $0.52
    下载: 导出CSV

    表 4  仿真参数

    Table 4.  Simulation parameters.

    名称名称
    物理节点数量24个物理链路数量43条
    链路频谱数量386个每条虚拟链路带宽需求{5, 6, 7, 8, 9}个
    虚拟节点数量{2, 3, 4}个每条虚拟链路密钥需求{2000, 2400, 2800, 3200, 3600}bit
    下载: 导出CSV
  • [1]

    Lin R P, Luo S, Zhou J W, Wang S, Cai A L, Zhong W D, Moshe Z 2018 J. Lightwave Technol. 36 3551Google Scholar

    [2]

    Jiang H H, Wang Y X, Gong L, Zhu Z Q 2015 J. Opt. Commun. Netw. 7 1160Google Scholar

    [3]

    Gong L, Zhu Z 2013 J. Lightwave Technol. 32 450Google Scholar

    [4]

    Jarray A, Karmouch A 2014 IEEE/ACM Trans. Netw. 23 1012Google Scholar

    [5]

    Botero J F, Hesselbach X, Fischer A, Hermann D M 2012 Telecommun. Syst. 51 273Google Scholar

    [6]

    王妍 2020 硕士学位论文(北京: 北京邮电大学)

    Wang Y 2020 M. S. Dessertation (Beijing: Beijing University of Posts and Telecommunications ) (in Chinese)

    [7]

    Zeng P, Zhou H Y, Wu W J, Ma X F 2022 Nat. Commun. 13 1Google Scholar

    [8]

    Zhou X Y, Zhang C H, Zhang C M, Wang Q 2019 Phys. Rev. A 99 062316Google Scholar

    [9]

    Mao Y Q, Wang B X, Zhao C X, Wang G Q, Wang R C, Wang H H, Zhou F, Nie J M, Chen Q, Zhao Y, Zhang Q, Zhang J, Chen T Y, Pan J W 2018 Opt. Express 26 6010Google Scholar

    [10]

    王鹏辉, 张宁, 肖明明 2019 计算机工程与应用 55 106Google Scholar

    Wang P H, Zhang N, Xiao M M 2019 Comput. Eng. Appl. 55 106Google Scholar

    [11]

    Gottesman D, Lo H K, Lutkenhaus N, Preskill J 2004 Quantum Inf. Comput. 4 325Google Scholar

    [12]

    朱凤丹 2016 硕士学位论文 (南京: 南京邮电大学)

    Zhu F D 2016 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese)

    [13]

    Zhou Y H, Yu Z W, Wang X B 2016 Phys. Rev. A 93 042324Google Scholar

    [14]

    Xu H, Yu Z W, Jiang C, Hu X L, Wang X B 2020 Phys. Rev. A 101 042330Google Scholar

    [15]

    Cao Y, Zhao Y L, Wang Q, Zhang J, Ng S X, Hanzo L 2022 IEEE Commun. Surv. Tut. 24 839Google Scholar

    [16]

    赵礼峰, 黄奕雯 2017 计算机技术与发展 27 98Google Scholar

    Zhao L F, Huang Y W 2017 Comput. Technol. Dev. 27 98Google Scholar

    [17]

    Xu F, Xu H, Lo H K 2014 Phys. Rev. A. 89 052333Google Scholar

    [18]

    Yin H L, Chen T Y, Yu Z W, Liu H, You L X, Zhou Y H, Chen S J, Mao M Q, Huang M Q, Zhang W J, Chen H, Li M J, Nolan D, Zhou F, Jiang X, Wang Z, Zhang Q, Wang X B, Pan J W 2016 Phys. Rev. Lett. 117 190501Google Scholar

    [19]

    Liu Y, Yu Z W, Zhang W J, Guan J Y, Chen J P, Zhang C, Hu X L, Li H, Jiang C, Lin J, Chen T Y, You L X, Wang Z, Wang X B, Zhang Q, Pan J W 2019 Phys. Rev. Lett. 123 100505Google Scholar

  • [1] 罗一振, 马洛嘉, 孙铭烁, 吴思睿, 邱丽华, 王禾, 王琴. 基于监控标记单光子源的量子密钥分发协议. 物理学报, 2024, 73(24): 240302. doi: 10.7498/aps.73.20241269
    [2] 赖红, 任黎, 黄钟锐, 万林春. 基于多尺度纠缠重整化假设的量子网络通信资源优化方案. 物理学报, 2024, 73(23): 230301. doi: 10.7498/aps.73.20241382
    [3] 陈越, 刘长杰, 郑伊佳, 曹原, 郭明轩, 朱佳莉, 周星宇, 郁小松, 赵永利, 王琴. 多域跨协议量子网络的域间密钥业务按需提供策略. 物理学报, 2024, 73(17): 170301. doi: 10.7498/aps.73.20240819
    [4] 周江平, 周媛媛, 周学军. 非对称信道相位匹配量子密钥分发. 物理学报, 2023, 72(14): 140302. doi: 10.7498/aps.72.20230652
    [5] 刘天乐, 徐枭, 付博玮, 徐佳歆, 刘靖阳, 周星宇, 王琴. 基于回归决策树的测量设备无关型量子密钥分发参数优化. 物理学报, 2023, 72(11): 110304. doi: 10.7498/aps.72.20230160
    [6] 孟杰, 徐乐辰, 张成峻, 张春辉, 王琴. 标记单光子源在量子密钥分发中的应用. 物理学报, 2022, 71(17): 170304. doi: 10.7498/aps.71.20220344
    [7] 陈以鹏, 刘靖阳, 朱佳莉, 方伟, 王琴. 机器学习在量子通信资源优化配置中的应用. 物理学报, 2022, 71(22): 220301. doi: 10.7498/aps.71.20220871
    [8] 叶炜, 郭迎, 夏莹, 钟海, 张欢, 丁建枝, 胡利云. 基于量子催化的离散调制连续变量量子密钥分发. 物理学报, 2020, 69(6): 060301. doi: 10.7498/aps.69.20191689
    [9] 吴承峰, 杜亚男, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明. 弱相干光源测量设备无关量子密钥分发系统的性能优化分析. 物理学报, 2016, 65(10): 100302. doi: 10.7498/aps.65.100302
    [10] 周飞, 雍海林, 李东东, 印娟, 任继刚, 彭承志. 基于不同介质间量子密钥分发的研究. 物理学报, 2014, 63(14): 140303. doi: 10.7498/aps.63.140303
    [11] 胡华鹏, 张 静, 王金东, 黄宇娴, 路轶群, 刘颂豪, 路 巍. 双协议量子密钥分发系统实验研究. 物理学报, 2008, 57(9): 5605-5611. doi: 10.7498/aps.57.5605
    [12] 张 静, 王发强, 赵 峰, 路轶群, 刘颂豪. 时间和相位混合编码的量子密钥分发方案. 物理学报, 2008, 57(8): 4941-4946. doi: 10.7498/aps.57.4941
    [13] 赵 峰, 路轶群, 王发强, 陈 霞, 李明明, 郭邦红, 廖常俊, 刘颂豪. 基于微弱相干脉冲稳定差分相位量子密钥分发. 物理学报, 2007, 56(4): 2175-2179. doi: 10.7498/aps.56.2175
    [14] 何广强, 易 智, 朱 俊, 曾贵华. 基于双模压缩态的量子密钥分发方案. 物理学报, 2007, 56(11): 6427-6433. doi: 10.7498/aps.56.6427
    [15] 陈 霞, 王发强, 路轶群, 赵 峰, 李明明, 米景隆, 梁瑞生, 刘颂豪. 运行双协议相位调制的量子密钥分发系统. 物理学报, 2007, 56(11): 6434-6440. doi: 10.7498/aps.56.6434
    [16] 冯发勇, 张 强. 基于超纠缠交换的量子密钥分发. 物理学报, 2007, 56(4): 1924-1927. doi: 10.7498/aps.56.1924
    [17] 陈 杰, 黎 遥, 吴 光, 曾和平. 偏振稳定控制下的量子密钥分发. 物理学报, 2007, 56(9): 5243-5247. doi: 10.7498/aps.56.5243
    [18] 李明明, 王发强, 路轶群, 赵 峰, 陈 霞, 梁瑞生, 刘颂豪. 高稳定的差分相位编码量子密钥分发系统. 物理学报, 2006, 55(9): 4642-4646. doi: 10.7498/aps.55.4642
    [19] 吴 光, 周春源, 陈修亮, 韩晓红, 曾和平. 长距离长期稳定的量子密钥分发系统. 物理学报, 2005, 54(8): 3622-3626. doi: 10.7498/aps.54.3622
    [20] 马海强, 李亚玲, 赵 环, 吴令安. 基于双偏振分束器的量子密钥分发系统. 物理学报, 2005, 54(11): 5014-5017. doi: 10.7498/aps.54.5014
计量
  • 文章访问数:  4765
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-21
  • 修回日期:  2022-10-12
  • 上网日期:  2023-01-03
  • 刊出日期:  2023-01-20

/

返回文章
返回