搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带身份认证的量子安全直接通信方案

周贤韬 江英华

引用本文:
Citation:

带身份认证的量子安全直接通信方案

周贤韬, 江英华

Quantum secure direct communication scheme with identity authentication

Zhou Xian-Tao, Jiang Ying-Hua
PDF
HTML
导出引用
  • 针对传统量子安全直接通信方案中需提前假设通信双方合法性的问题, 提出一种带身份认证的基于GHZ态(一种涉及至少三个子系统或粒子纠缠的量子态)的量子安全直接通信方案. 该方案将GHZ态粒子分成三部分, 并分三次发送, 每一次都加入窃听检测粒子检测信道是否安全, 并在第二次发送的时候加入身份认证, 用以验证接收方的身份, 在第三次发送完粒子之后, 接收方将所有检测粒子抽取出来, 之后对GHZ态粒子做联合测量, 并通过原先给定的编码规则恢复原始信息. 本方案设计简单、高效, 无需复杂的幺正变换即可实现通信. 安全性分析证明, 该方案能抵御常见的内部攻击和外部攻击, 并且有较高的传输效率、量子比特利用率和编码容量, 最大的优势在于发送方发送信息的时候不需要假设接收方的合法性, 有较高的实际应用价值.
    Aiming at the problem that traditional quantum secure direct communication schemes need to assume the legitimacy of both parties in advance, a GHZ state (a quantum state involving at least three subsystems or particles entanglement) based quantum secure direct communication scheme with identity authentication is proposed. The scheme first encodes GHZ state particles into eight types, divides the particles into three parts, and sends them three times. Each time, eavesdropping is added to detect whether the particle detection channel is secure, and identity authentication is added when sending particles for the second time to verify the identity of the receiver. Specifically, according to the value of the ID key IDA, the specified particles (such as $ |0\rangle $ particles or $ |+ \rangle $ particles) are found in the two particles. Then their positions are marked as L and they traverse down until all the identity keys are traversed, obtaining a position sequence L. After sending the two particles to Bob for eavesdropping detection, Bob measures the L position of the two particles on the corresponding basis according to the value of the identity key, the measurement results are coded, and compared with the identity key IDA to complete the identity authentication. After sending the particles for the third time. the receiver extracts all the detected particles, and then the GHZ state particles are jointly measured, and the original information is recovered through the previously given coding rules, so as to realize quantum safe direct communication. The design of this scheme is simple and efficient, and the communication can be realized without complex unitary transformation. The correctness analysis proves that the scheme is correct in theory. The security analyses of interception/measurement retransmission attack, Trojan horse attack, denial of service attack, auxiliary particle attack, identity impersonation attack, and other attacks prove that the scheme can resist common internal attacks and external attacks, and solve the problem of information leakage. The transmission efficiency of the scheme is 1, the quantum bit utilization is 1, and the coding capacity is a quantum state carrying 3 bits of information. Compared with some previous schemes, this scheme has obvious advantages in these three aspects. The biggest advantage is that the sender does not need to assume the legitimacy of the receiver when sending information, so it has high practical application value.
      通信作者: 江英华, 250364629@qq.com
    • 基金项目: 陕西省教育厅科研专项科学研究计划(批准号: 19JK0889)资助的课题.
      Corresponding author: Jiang Ying-Hua, 250364629@qq.com
    • Funds: Project supported by the Special Scientific Research Plan of Shaanxi Provincial Department of Education, China (Grant No. 19JK0889).
    [1]

    Wiesner S 1983 Acm. Sigact. News 15 78

    [2]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Omputers, Systems, and Signal Processing (New York: IEEE Press) p175

    [3]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302Google Scholar

    [4]

    Almut B, Berthold-Georg E, Christian K, Harald W 2002 J. Phys. A 35 46

    [5]

    Boström K, Felbinger T 2002 Phys. Rev. Lett. 89 187902Google Scholar

    [6]

    Wójcik A 2003 Phys. Rev. Lett. 90 157901Google Scholar

    [7]

    Cai Q Y 2003 Phys. Rev. Lett. 91 266104Google Scholar

    [8]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317Google Scholar

    [9]

    Gao T, Yan F L, Wang Z X 2005 Chin. Phys. 14 893Google Scholar

    [10]

    Dong Li, Xiu X M, Gao Y J, Chi F 2008 Commun. Theor. Phys. 6 1498

    [11]

    Wang J, Zhang Q, Tang C J 2006 Phys. Lett. A 06 035

    [12]

    Yan F L, Hai R H 2007 Commun. Theor. Phys. 47 629Google Scholar

    [13]

    Lin S, Wen Q Y, Gao F, Zhu F Z 2008 Phys. Rev. A 78 064304Google Scholar

    [14]

    Dong L, Xiu X M, Gao Y J, Chi F 2009 Commun. Theor. Phys. 51 08

    [15]

    Hassanpour S, Houshmand M 2015 Quantum Information Processing 14 15

    [16]

    曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业 2016 物理学报 65 230301Google Scholar

    Cao Z W, Zhao G, Zhang S H, Feng X Y, Peng J Y 2016 Acta Phys. Sin. 65 230301Google Scholar

    [17]

    刘志昊, 陈汉武 2017 物理学报 66 130304Google Scholar

    Liu Z H, Chen H W 2017 Acta Phys. Sin. 66 130304Google Scholar

    [18]

    周贤韬, 江英华 2022 激光技术 46 79Google Scholar

    Zhou X T, Jiang Y H 2022 Laser Technol. 46 79Google Scholar

    [19]

    赵宁, 江英华, 周贤韬, 郭晨飞, 刘彪 2021 网络安全技术与应用 08 30Google Scholar

    Zhao N, Jiang Y H, Zhou X T, Guo C F, Liu B 2021 Network Security Technol. 08 30Google Scholar

    [20]

    江英华, 张仕斌, 昌燕, 杨帆, 杨敏 2018 量子电子学报 35 49Google Scholar

    Jiang Y H, Zhang S B, Chang Y, Yang F, Yang M 2018 J. Quan. Electr. 35 49Google Scholar

    [21]

    江英华, 张仕斌, 杨帆, 昌燕, 张航 2017 激光与光电子学进展 54 454Google Scholar

    Jiang Y H, Zhang S B, Yang F, Chang Y, Zhang H 2017 Prog. Laser and Optoelectr. 54 454Google Scholar

    [22]

    江英华, 张仕斌, 昌燕, 杨帆, 邵婷婷 2018 计算机应用研究 35 889Google Scholar

    Jiang Y H, Zhang S B, Chang Y, Yang F, Shao T T 2018 Appl. Res. Compu. 35 889Google Scholar

    [23]

    Jiang Y H, Zhang S B, Dai J Q 2018 Mod. Phys. Lett. B 32 1850125

    [24]

    江英华 2018 硕士学位论文 (成都: 成都信息工程大学)

    Jiang Y H 2018 M. S. Thesis (Chengdu: Chengdu University of Information Engineering) (in Chinese)

    [25]

    赵宁, 江英华, 周贤韬 2022 物理学报 71 150304Google Scholar

    Zhao N, Jiang Y H, Zhou X T 2022 Acta Phys. Sin. 71 150304Google Scholar

    [26]

    龚黎华, 陈振泳, 徐良超, 周南润 2022 物理学报 71 130304Google Scholar

    Gong L H, Chen Z Y, Xu L C, Zhou N R 2022 Acta Phys. Sin. 71 130304Google Scholar

    [27]

    Liu D, Pei C X, Quan D X, Nan Z 2022 Chin. Phys. Lett. 27 050306Google Scholar

    [28]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319Google Scholar

    [29]

    权东晓, 裴昌幸, 刘丹, 赵楠 2010 物理学报 59 2493Google Scholar

    Quan D X, Pei C X, Liu D, Zhao N 2010 Acta Phys. Sin. 59 2493Google Scholar

  • 表 1  GHZ态粒子对应的编码

    Table 1.  Corresponding codes of GHZ state particles.

    GHZ态对应的编码
    $\varphi_0=\dfrac{1}{\sqrt{2} } |000\rangle + |111\rangle_{123}$000
    $\varphi_1=\dfrac{1}{\sqrt{2} }|001\rangle + |110\rangle_{123}$001
    $\varphi_2=\dfrac{1}{\sqrt{2} }|010\rangle + |101\rangle_{123}$010
    $\varphi_3=\dfrac{1}{\sqrt{2} }|100\rangle + |011\rangle_{123}$011
    $\varphi_4=\dfrac{1}{\sqrt{2} } |100\rangle + |011\rangle_{123}$100
    $\varphi_5=\dfrac{1}{\sqrt{2} } |010\rangle + |101\rangle_{123}$101
    $\varphi_6=\dfrac{1}{\sqrt{2} } |001\rangle + |110\rangle_{123}$110
    $\varphi_7=\dfrac{1}{\sqrt{2} }|000\rangle + |111\rangle_{123}$111
    下载: 导出CSV

    表 2  身份认证过程

    Table 2.  Identity authentication process.

    S2|+$\rangle $|0$\rangle $|0$\rangle $|+$\rangle $
    IDA 1001
    位置L 2679
    Bob正确选择
    的测量基
    XZZX
    Bob测量结果|+$\rangle $|0$\rangle $|0$\rangle $|+$\rangle $
    Bob(随机选择
    的测量基)及
    测量结果
    50%|+$\rangle $
    25%|0$\rangle $
    25%|1$\rangle $
    50%|0$\rangle $
    25%|+$\rangle$
    25%|–$\rangle $
    50%|0$\rangle $
    25%|+$\rangle $
    25%|–$\rangle $
    50%|+$\rangle $
    25%|0$\rangle $
    25%|1$\rangle $
    下载: 导出CSV

    表 3  相似协议效率对比

    Table 3.  Efficiency comparison of similar protocols.

    协议传输效率 ξ量子比特利用率 η编码容量
    Ping-Pong 协议[6]0.330.33一个态: 1.0 bit
    Two-Step QSDC协议[9]1.001.00一个态: 1.0 bit
    One-Pad-Time QSDC协议[27]1.001.00一个态: 1.0 bit
    基于纠缠交换的QSDC协议[11]1.001.00一个态: 1.0 bit
    权东晓单光子的单向QSDC协议[29]0.501.00一个态: 1.0 bit
    Bell态和单光子混合QSDC协议[16]1.001.00一个态: 1.5 bits
    本文所提协议1.001.00一个态: 3.0 bits
    下载: 导出CSV
  • [1]

    Wiesner S 1983 Acm. Sigact. News 15 78

    [2]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Omputers, Systems, and Signal Processing (New York: IEEE Press) p175

    [3]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302Google Scholar

    [4]

    Almut B, Berthold-Georg E, Christian K, Harald W 2002 J. Phys. A 35 46

    [5]

    Boström K, Felbinger T 2002 Phys. Rev. Lett. 89 187902Google Scholar

    [6]

    Wójcik A 2003 Phys. Rev. Lett. 90 157901Google Scholar

    [7]

    Cai Q Y 2003 Phys. Rev. Lett. 91 266104Google Scholar

    [8]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317Google Scholar

    [9]

    Gao T, Yan F L, Wang Z X 2005 Chin. Phys. 14 893Google Scholar

    [10]

    Dong Li, Xiu X M, Gao Y J, Chi F 2008 Commun. Theor. Phys. 6 1498

    [11]

    Wang J, Zhang Q, Tang C J 2006 Phys. Lett. A 06 035

    [12]

    Yan F L, Hai R H 2007 Commun. Theor. Phys. 47 629Google Scholar

    [13]

    Lin S, Wen Q Y, Gao F, Zhu F Z 2008 Phys. Rev. A 78 064304Google Scholar

    [14]

    Dong L, Xiu X M, Gao Y J, Chi F 2009 Commun. Theor. Phys. 51 08

    [15]

    Hassanpour S, Houshmand M 2015 Quantum Information Processing 14 15

    [16]

    曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业 2016 物理学报 65 230301Google Scholar

    Cao Z W, Zhao G, Zhang S H, Feng X Y, Peng J Y 2016 Acta Phys. Sin. 65 230301Google Scholar

    [17]

    刘志昊, 陈汉武 2017 物理学报 66 130304Google Scholar

    Liu Z H, Chen H W 2017 Acta Phys. Sin. 66 130304Google Scholar

    [18]

    周贤韬, 江英华 2022 激光技术 46 79Google Scholar

    Zhou X T, Jiang Y H 2022 Laser Technol. 46 79Google Scholar

    [19]

    赵宁, 江英华, 周贤韬, 郭晨飞, 刘彪 2021 网络安全技术与应用 08 30Google Scholar

    Zhao N, Jiang Y H, Zhou X T, Guo C F, Liu B 2021 Network Security Technol. 08 30Google Scholar

    [20]

    江英华, 张仕斌, 昌燕, 杨帆, 杨敏 2018 量子电子学报 35 49Google Scholar

    Jiang Y H, Zhang S B, Chang Y, Yang F, Yang M 2018 J. Quan. Electr. 35 49Google Scholar

    [21]

    江英华, 张仕斌, 杨帆, 昌燕, 张航 2017 激光与光电子学进展 54 454Google Scholar

    Jiang Y H, Zhang S B, Yang F, Chang Y, Zhang H 2017 Prog. Laser and Optoelectr. 54 454Google Scholar

    [22]

    江英华, 张仕斌, 昌燕, 杨帆, 邵婷婷 2018 计算机应用研究 35 889Google Scholar

    Jiang Y H, Zhang S B, Chang Y, Yang F, Shao T T 2018 Appl. Res. Compu. 35 889Google Scholar

    [23]

    Jiang Y H, Zhang S B, Dai J Q 2018 Mod. Phys. Lett. B 32 1850125

    [24]

    江英华 2018 硕士学位论文 (成都: 成都信息工程大学)

    Jiang Y H 2018 M. S. Thesis (Chengdu: Chengdu University of Information Engineering) (in Chinese)

    [25]

    赵宁, 江英华, 周贤韬 2022 物理学报 71 150304Google Scholar

    Zhao N, Jiang Y H, Zhou X T 2022 Acta Phys. Sin. 71 150304Google Scholar

    [26]

    龚黎华, 陈振泳, 徐良超, 周南润 2022 物理学报 71 130304Google Scholar

    Gong L H, Chen Z Y, Xu L C, Zhou N R 2022 Acta Phys. Sin. 71 130304Google Scholar

    [27]

    Liu D, Pei C X, Quan D X, Nan Z 2022 Chin. Phys. Lett. 27 050306Google Scholar

    [28]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319Google Scholar

    [29]

    权东晓, 裴昌幸, 刘丹, 赵楠 2010 物理学报 59 2493Google Scholar

    Quan D X, Pei C X, Liu D, Zhao N 2010 Acta Phys. Sin. 59 2493Google Scholar

  • [1] 周贤韬, 江英华, 郭晓军, 彭展. 带双向身份认证的基于单光子和Bell态混合的量子安全直接通信方案. 物理学报, 2023, 72(13): 130302. doi: 10.7498/aps.72.20221972
    [2] 赵良超. SESRI 300 MeV同步加速器注入线的传输效率与接受效率. 物理学报, 2022, 71(11): 112901. doi: 10.7498/aps.71.20212112
    [3] 王明宇, 王馨德, 阮东, 龙桂鲁. 量子直接传态. 物理学报, 2021, 70(19): 190301. doi: 10.7498/aps.70.20210837
    [4] 赵军龙, 张译丹, 杨名. 噪声对一种三粒子量子探针态的影响. 物理学报, 2018, 67(14): 140302. doi: 10.7498/aps.67.20180040
    [5] 何江涛, 何文奇, 廖美华, 卢大江, 彭翔. 一种基于双光束干涉和非线性相关的身份认证方法. 物理学报, 2017, 66(4): 044202. doi: 10.7498/aps.66.044202
    [6] 杨璐, 马鸿洋, 郑超, 丁晓兰, 高健存, 龙桂鲁. 基于量子隐形传态的量子保密通信方案. 物理学报, 2017, 66(23): 230303. doi: 10.7498/aps.66.230303
    [7] 刘志昊, 陈汉武. 基于Bell态粒子和单光子混合的量子安全直接通信方案的信息泄露问题. 物理学报, 2017, 66(13): 130304. doi: 10.7498/aps.66.130304
    [8] 曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业. 基于Bell态粒子和单光子混合的量子安全直接通信方案. 物理学报, 2016, 65(23): 230301. doi: 10.7498/aps.65.230301
    [9] 马鸿洋, 秦国卿, 范兴奎, 初鹏程. 噪声情况下的量子网络直接通信. 物理学报, 2015, 64(16): 160306. doi: 10.7498/aps.64.160306
    [10] 吴贵铜, 周南润, 龚黎华, 刘三秋. 集体噪声信道上带身份认证的无信息泄露的量子对话协议. 物理学报, 2014, 63(6): 060302. doi: 10.7498/aps.63.060302
    [11] 张沛, 周小清, 李智伟. 基于量子隐形传态的无线通信网络身份认证方案. 物理学报, 2014, 63(13): 130301. doi: 10.7498/aps.63.130301
    [12] 何文奇, 彭翔, 孟祥锋, 刘晓利. 一种基于双光束干涉的分级身份认证方法. 物理学报, 2013, 62(6): 064205. doi: 10.7498/aps.62.064205
    [13] 王郁武, 詹佑邦. 零知识证明的量子身份认证协议. 物理学报, 2009, 58(11): 7668-7671. doi: 10.7498/aps.58.7668
    [14] 查新未, 张淳民. 利用一个三粒子W态隐形传送N粒子GHZ态. 物理学报, 2008, 57(3): 1339-1342. doi: 10.7498/aps.57.1339
    [15] 王天银, 秦素娟, 温巧燕, 朱甫臣. 多方控制的量子安全直接通信协议的分析及改进. 物理学报, 2008, 57(12): 7452-7456. doi: 10.7498/aps.57.7452
    [16] 杜建忠, 陈秀波, 温巧燕, 朱甫臣. 保密多方量子求和. 物理学报, 2007, 56(11): 6214-6219. doi: 10.7498/aps.56.6214
    [17] 王 剑, 陈皇卿, 张 权, 唐朝京. 多方控制的量子安全直接通信协议. 物理学报, 2007, 56(2): 673-677. doi: 10.7498/aps.56.673
    [18] 邬鹏举, 李玉德, 林晓燕, 刘安东, 孙天希. x射线在毛细导管中传输的模拟计算. 物理学报, 2005, 54(10): 4478-4482. doi: 10.7498/aps.54.4478
    [19] 林秀, 李洪才. 利用V形三能级原子与光场Raman相互作用制备多原子GHZ态. 物理学报, 2001, 50(9): 1689-1692. doi: 10.7498/aps.50.1689
    [20] 匡锦瑜, 邓昆, 黄荣怀. 利用时空混沌同步进行数字加密通信. 物理学报, 2001, 50(10): 1856-1861. doi: 10.7498/aps.50.1856
计量
  • 文章访问数:  2164
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-24
  • 修回日期:  2022-10-03
  • 上网日期:  2022-10-19
  • 刊出日期:  2023-01-20

/

返回文章
返回