搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带双向身份认证的基于单光子和Bell态混合的量子安全直接通信方案

周贤韬 江英华 郭晓军 彭展

引用本文:
Citation:

带双向身份认证的基于单光子和Bell态混合的量子安全直接通信方案

周贤韬, 江英华, 郭晓军, 彭展

Quantum secure direct communication scheme based on the mixture of single photon and Bell state with two way authentication

Zhou Xian-Tao, Jiang Ying-Hua, Guo Xiao-Jun, Peng Zhan
PDF
HTML
导出引用
  • 针对量子安全直接通信中身份认证的需要, 提出一种带双向身份认证的基于单光子和Bell态混合的量子安全直接通信方案. 通信开始前通信双方共享一串秘密信息, 先利用单光子来验证接收方的合法性, 再利用Bell态粒子验证发送方的合法性, 之后将Bell态粒子与单光子混合作为载体发送. 每一次发送量子态时都加入窃听检测粒子, 而一旦窃听者截获发送粒子, 由于得到的是不完整的粒子, 窃听者无法恢复原始信息, 并且窃听行为会立刻被发现, 从而终止通信. 本方案中单光子和Bell态充得到分利用, 且混合之后的通信能有效提高传输效率和编码容量以及量子比特利用率. 安全性分析证明, 本方案能抵御常见的外部攻击和内部攻击.
    In response to the demand for identity authentication in quantum secure direct communication, this paper proposes a quantum secure direct communication scheme based on a mixture of single photon and Bell state, by combining the bidirectional identity authentication. Before communication begins, both parties share a series of secret information to prepare a series of single photon and Bell state particles. Encoding four single photons and four Bell states yields eight types of encoded information, followed by identity authentication. The first step in identity authentication is to use a single photon to verify the legitimacy of the receiver. If the error exceeds the given threshold, it indicates the presence of eavesdropping. Otherwise, the channel is safe. Then, Bell state particles are used to verify the legitimacy of the sender, and the threshold is also used to determine whether there is eavesdropping. The present method is the same as previous one. If the error rate is higher than the given threshold, it indicates the existence of third-party eavesdropping. Otherwise, it indicates that the channel is secure. As for the specific verification method, it will be explained in detail in the article. Afterwards, Bell state particles are mixed with a single photon as a transmission carrier, and eavesdropping detection particles are added whenever the quantum state is sent. However, once the eavesdropper intercepts the transmitted particles, owing to incomplete information obtained, the eavesdropper is unable to recover the original information, and the eavesdropping behavior will be immediately detected, thus terminating communication. In this scheme, single photon and Bell states are fully utilized, and hybrid communication can effectively improve transmission efficiency, encoding capability, and quantum bit utilization. Security analysis shows that this scheme can resist common external and internal attacks such as interception/measurement replay attacks, auxiliary particle attacks, and identity impersonation attacks. The analysis of efficiency and encoding capacity shows that the transmission efficiency of this scheme is 1, the encoding capacity is 3 bits per state, and the quantum bit utilization rate is 1. Compared with other schemes, this scheme has significant advantages because it uses different particles for bidirectional authentication, making it more difficult for attackers to crack, and thus it has higher security than traditional schemes.
      通信作者: 江英华, 250364629@qq.com
    • 基金项目: 陕西省教育厅科研专项科学研究计划(批准号: 19JK0889)和西藏自治区自然科学基金(批准号: XZ2019ZRG-36(Z), XZ202101ZR0089G)资助的课题.
      Corresponding author: Jiang Ying-Hua, 250364629@qq.com
    • Funds: Project supported by the Department of Education Research Special Scientific Research Plan of Shaanxi Province, China (Grant No. 19JK0889) and the Natural Science Foundation of Tibet Autonomous Region, China (Grant Nos. XZ2019ZRG-36(Z), XZ202101ZR0089G).
    [1]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (New York: IEEE Press) p175

    [2]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [3]

    Kwek L C, Cao L, Luo W, Wang Y X, Sun S H, Wang X B, Liu A Q 2021 AAPPS Bull. 31 15Google Scholar

    [4]

    Guo H, Li Z Y, Yu S, Zhang Y C 2021 Fundament. Res. 1 96Google Scholar

    [5]

    Gerhardt I, Liu Q, Lamas-Linares A, Skaar J, Kurtsiefer C, Makarov V 2011 Nat. Commun. 2 349Google Scholar

    [6]

    Beige A, Englert B G, Kurtsiefer C 2002 J. Phys. A Math. Gen. 35 L407Google Scholar

    [7]

    Quan D X, Zhu C H, Liu S Q, Pei C X 2015 Chin. Phys. B 24 256Google Scholar

    [8]

    Li Y B, Song T T, Huang W 2015 Internat. J. Theoretical Phys. 54 589Google Scholar

    [9]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302Google Scholar

    [10]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317Google Scholar

    [11]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319Google Scholar

    [12]

    Wang C, Deng F G, Li Y S 2005 Phys. Rev. A 71 044305Google Scholar

    [13]

    Wang J, Zhang Q, Tang C J 2006 Phys. Lett. A 358 256Google Scholar

    [14]

    Man Z X, Xia Y J 2007 Chin. Phys. Lett. 24 15Google Scholar

    [15]

    Lan M, Shao T N, Xie J L, Yang X F, Sun K, Cai T T, Wang J Z 2011 Sci. China Phys. Mech. Astron. 54 942Google Scholar

    [16]

    李凯, 黄晓英, 滕吉红, 李振华 2012 电子与信息学报 34 1917Google Scholar

    Li K, Huang X Y, Teng J H, Li Z H 2012 J. Electron. Inf. Tech. 34 1917Google Scholar

    [17]

    安辉耀, 刘敦伟, 耿瑞华, 曾和平, 赵林欣 2016 系统工程与电子技术 38 1917

    An H Y, Liu D W, Geng R H, Zeng H P, Zhao L X 2016 Syst. Eng. Electron. Tech. 38 1917

    [18]

    龙桂鲁 2015 十一届全国光学前沿研讨会 长沙 2015-10-09 p21

    Long G L 2015 The 11 th National Symposium on Optical Frontiers Changsha, China, October 9, 2015 p21 (in Chinese)

    [19]

    Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q, Long G L 2016 Light Sci. Appl. 5 e16144Google Scholar

    [20]

    Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S, Guo G C 2017 Phys. Rev. Lett. 118 220501Google Scholar

    [21]

    Zhu F, Zhang W, Sheng Y B, Huang Y D 2017 Sci. Bull. 62 1519Google Scholar

    [22]

    曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业 2016 物理学报 65 230301Google Scholar

    Cao Z W, Zhao G, Zhang S H, Feng X Y, Peng J Y 2016 Acta Phys. Sin. 65 230301Google Scholar

    [23]

    刘志昊, 陈汉武 2017 物理学报 66 130304Google Scholar

    Liu Z H, Chen H W 2017 Acta Phys. Sin. 66 130304Google Scholar

    [24]

    赵宁, 江英华, 周贤韬, 郭晨飞, 刘彪 2021 网络安全技术与应用 8 30Google Scholar

    Zhao N, Jiang Y H, Zhou X T, Guo C F, Liu B 2021 Network Security Technology 8 30Google Scholar

    [25]

    周贤韬, 江英华, 郭晨飞, 赵宁, 刘彪 2021 量子电子学报 39 768Google Scholar

    Zhou X T, Jiang Y H, Guo C F, Zhao N, Liu B 2021 Chin. J. Quantum Electron. 39 768Google Scholar

    [26]

    周贤韬, 江英华 2022 激光技术 46 79Google Scholar

    Zhou X T, Jiang Y H 2022 Laser Technol. 46 79Google Scholar

    [27]

    赵宁, 江英华, 周贤韬 2022 物理学报 71 150304Google Scholar

    Zhao N, Jiang Y H, Zhou X T 2022 Acta Phys. Sin. 71 150304Google Scholar

    [28]

    龚黎华, 陈振泳, 徐良超, 周南润 2022 物理学报 71 130304Google Scholar

    Gong L H, Chen Z Y, Xu L C, Zhou N R 2022 Acta Phys. Sin. 71 130304Google Scholar

    [29]

    Qi R Y, Sun Z, Lin Z S, Niu P H, Hao W T, Song L Y, Huang Q, Gao J C, Yin L G, Long G L 2019 Light Sci. Appl. 8 22Google Scholar

    [30]

    Zhang H R, Sun Z, Qi R Y, Yin L G, Long G L, Lu J H 2022 Light Sci. Appl. 11 83Google Scholar

    [31]

    Wang C 2021 Fundament. Res. 1 91Google Scholar

  • 图 1  方案流程图

    Fig. 1.  Scheme flow chart.

    表 1  编码规则

    Table 1.  Coding rules.

    单光子表示的经典信息Bell态表示的经典信息
    $ | 0 \rangle $000$ | {{\psi ^ + }} \rangle $010
    $| 1 \rangle $111$ | {{\psi ^ - }} \rangle $101
    $ | + \rangle $001$| {{\varphi ^ + }} \rangle $011
    $ | - \rangle $110$| {{\varphi ^ - }} \rangle $100
    下载: 导出CSV

    表 2  基于单光子身份认证过程

    Table 2.  Single photon based identity authentication process.

    1234
    秘钥K1001
    序列$ {S_n} $量子态$ | + \rangle $$ | 0 \rangle $$ | 0 \rangle $$ | + \rangle $
    合法Alice根据K
    选测量基
    XZZX
    合法Alice测量结果$ | + \rangle $$ | 0 \rangle $$ | 0 \rangle $$ | + \rangle $
    冒充Alice测量结果
    (随机选择测量基)
    50%$ | + \rangle $
    25%$ | 0 \rangle $
    25%$ | 1 \rangle $
    50%$ | 0 \rangle $
    25%$ | + \rangle $
    25%$ | - \rangle $
    50%$ | 0 \rangle $
    25%$ | + \rangle $
    25%$ | - \rangle $
    50%$ | + \rangle $
    25%$ | 0 \rangle $
    25%$ | 1 \rangle $
    下载: 导出CSV

    表 3  基于Bell态身份认证过程

    Table 3.  Identity authentication process based on Bell state.

    ${\varphi }^{+}或{\varphi }^{-}$在$ {S}_{1} $中位置14591112151718$ \cdots $
    量子态$ |0 \rangle $$ | + \rangle $$ |0 \rangle $$ | + \rangle $$ |- \rangle $$ |1 \rangle $$ |0 \rangle $$ |- \rangle $$ | + \rangle $$ \cdots $
    共享秘钥K1001
    Alice公布位置L451518
    根据K选择测量基XZZX
    合法Bob测量结果$ | + \rangle $$ |0 \rangle $$ |0 \rangle $$ | + \rangle $
    冒充Bob 测量结果$50{\text{%}} | + \rangle $

    $25{\text{%}} |0 \rangle $

    $25{\text{%}} |1 \rangle $
    $ 50{\text{%}}|0 \rangle $

    $25{\text{%}} | + \rangle $

    $25{\text{%}} |- \rangle $
    $ 50{\text{%}}|0 \rangle $

    $ 25{\text{%}} | + \rangle $

    $25{\text{%}} |- \rangle $
    $50{\text{%}} | + \rangle $

    $25{\text{%}} |0 \rangle $

    $25{\text{%}} |1 \rangle $
    下载: 导出CSV

    表 4  信息传输过程

    Table 4.  Information transmission process.

    12345678
    秘密信息M010111011110011110000100
    混合态序列${S}_{1-S}$量子态$ \left| {{\psi ^ + }} \right\rangle $$ \left| 1 \right\rangle $$\left| {{\varphi ^ + }} \right\rangle $$ \left| - \right\rangle $$\left| {{\varphi ^ + }} \right\rangle $$ \left| - \right\rangle $$ \left| 0 \right\rangle $$\left| {{\varphi ^ - }} \right\rangle $
    Alice公布的测量基Bell基ZBell基XBell基XZBell基
    Bob测量结果$ \left| {{\psi ^ + }} \right\rangle $$ \left| 1 \right\rangle $$\left| {{\varphi ^ + }} \right\rangle $$ \left| - \right\rangle $$\left| {{\varphi ^ + }} \right\rangle $$ \left| - \right\rangle $$ \left| 0 \right\rangle $$\left| {{\varphi ^ - }} \right\rangle $
    解码得信息M010111011110011110000100
    下载: 导出CSV

    表 5  各方案参数对比

    Table 5.  Comparison of parameters of various schemes.

    协议传输
    效率 ξ
    量子比特
    利用率 η
    编码容量
    QSDC协议[10]11一个态: 1.0 bit
    One-Pad-Time-QSDC
    协议[11]
    11一个态: 1.0 bit
    基于纠缠交换的
    QSDC协议[12]
    11一个态: 1.0 bit
    Bell态和单光子
    混合QSDC协议[22]
    11一个态: 1.5 bits
    本协议11一个态: 3.0 bits
    下载: 导出CSV
  • [1]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (New York: IEEE Press) p175

    [2]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [3]

    Kwek L C, Cao L, Luo W, Wang Y X, Sun S H, Wang X B, Liu A Q 2021 AAPPS Bull. 31 15Google Scholar

    [4]

    Guo H, Li Z Y, Yu S, Zhang Y C 2021 Fundament. Res. 1 96Google Scholar

    [5]

    Gerhardt I, Liu Q, Lamas-Linares A, Skaar J, Kurtsiefer C, Makarov V 2011 Nat. Commun. 2 349Google Scholar

    [6]

    Beige A, Englert B G, Kurtsiefer C 2002 J. Phys. A Math. Gen. 35 L407Google Scholar

    [7]

    Quan D X, Zhu C H, Liu S Q, Pei C X 2015 Chin. Phys. B 24 256Google Scholar

    [8]

    Li Y B, Song T T, Huang W 2015 Internat. J. Theoretical Phys. 54 589Google Scholar

    [9]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302Google Scholar

    [10]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317Google Scholar

    [11]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319Google Scholar

    [12]

    Wang C, Deng F G, Li Y S 2005 Phys. Rev. A 71 044305Google Scholar

    [13]

    Wang J, Zhang Q, Tang C J 2006 Phys. Lett. A 358 256Google Scholar

    [14]

    Man Z X, Xia Y J 2007 Chin. Phys. Lett. 24 15Google Scholar

    [15]

    Lan M, Shao T N, Xie J L, Yang X F, Sun K, Cai T T, Wang J Z 2011 Sci. China Phys. Mech. Astron. 54 942Google Scholar

    [16]

    李凯, 黄晓英, 滕吉红, 李振华 2012 电子与信息学报 34 1917Google Scholar

    Li K, Huang X Y, Teng J H, Li Z H 2012 J. Electron. Inf. Tech. 34 1917Google Scholar

    [17]

    安辉耀, 刘敦伟, 耿瑞华, 曾和平, 赵林欣 2016 系统工程与电子技术 38 1917

    An H Y, Liu D W, Geng R H, Zeng H P, Zhao L X 2016 Syst. Eng. Electron. Tech. 38 1917

    [18]

    龙桂鲁 2015 十一届全国光学前沿研讨会 长沙 2015-10-09 p21

    Long G L 2015 The 11 th National Symposium on Optical Frontiers Changsha, China, October 9, 2015 p21 (in Chinese)

    [19]

    Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q, Long G L 2016 Light Sci. Appl. 5 e16144Google Scholar

    [20]

    Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S, Guo G C 2017 Phys. Rev. Lett. 118 220501Google Scholar

    [21]

    Zhu F, Zhang W, Sheng Y B, Huang Y D 2017 Sci. Bull. 62 1519Google Scholar

    [22]

    曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业 2016 物理学报 65 230301Google Scholar

    Cao Z W, Zhao G, Zhang S H, Feng X Y, Peng J Y 2016 Acta Phys. Sin. 65 230301Google Scholar

    [23]

    刘志昊, 陈汉武 2017 物理学报 66 130304Google Scholar

    Liu Z H, Chen H W 2017 Acta Phys. Sin. 66 130304Google Scholar

    [24]

    赵宁, 江英华, 周贤韬, 郭晨飞, 刘彪 2021 网络安全技术与应用 8 30Google Scholar

    Zhao N, Jiang Y H, Zhou X T, Guo C F, Liu B 2021 Network Security Technology 8 30Google Scholar

    [25]

    周贤韬, 江英华, 郭晨飞, 赵宁, 刘彪 2021 量子电子学报 39 768Google Scholar

    Zhou X T, Jiang Y H, Guo C F, Zhao N, Liu B 2021 Chin. J. Quantum Electron. 39 768Google Scholar

    [26]

    周贤韬, 江英华 2022 激光技术 46 79Google Scholar

    Zhou X T, Jiang Y H 2022 Laser Technol. 46 79Google Scholar

    [27]

    赵宁, 江英华, 周贤韬 2022 物理学报 71 150304Google Scholar

    Zhao N, Jiang Y H, Zhou X T 2022 Acta Phys. Sin. 71 150304Google Scholar

    [28]

    龚黎华, 陈振泳, 徐良超, 周南润 2022 物理学报 71 130304Google Scholar

    Gong L H, Chen Z Y, Xu L C, Zhou N R 2022 Acta Phys. Sin. 71 130304Google Scholar

    [29]

    Qi R Y, Sun Z, Lin Z S, Niu P H, Hao W T, Song L Y, Huang Q, Gao J C, Yin L G, Long G L 2019 Light Sci. Appl. 8 22Google Scholar

    [30]

    Zhang H R, Sun Z, Qi R Y, Yin L G, Long G L, Lu J H 2022 Light Sci. Appl. 11 83Google Scholar

    [31]

    Wang C 2021 Fundament. Res. 1 91Google Scholar

  • [1] 周贤韬, 江英华. 带身份认证的量子安全直接通信方案. 物理学报, 2023, 72(2): 020302. doi: 10.7498/aps.72.20221684
    [2] 赵良超. SESRI 300 MeV同步加速器注入线的传输效率与接受效率. 物理学报, 2022, 71(11): 112901. doi: 10.7498/aps.71.20212112
    [3] 王明宇, 王馨德, 阮东, 龙桂鲁. 量子直接传态. 物理学报, 2021, 70(19): 190301. doi: 10.7498/aps.70.20210837
    [4] 何江涛, 何文奇, 廖美华, 卢大江, 彭翔. 一种基于双光束干涉和非线性相关的身份认证方法. 物理学报, 2017, 66(4): 044202. doi: 10.7498/aps.66.044202
    [5] 杨璐, 马鸿洋, 郑超, 丁晓兰, 高健存, 龙桂鲁. 基于量子隐形传态的量子保密通信方案. 物理学报, 2017, 66(23): 230303. doi: 10.7498/aps.66.230303
    [6] 刘志昊, 陈汉武. 基于Bell态粒子和单光子混合的量子安全直接通信方案的信息泄露问题. 物理学报, 2017, 66(13): 130304. doi: 10.7498/aps.66.130304
    [7] 曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业. 基于Bell态粒子和单光子混合的量子安全直接通信方案. 物理学报, 2016, 65(23): 230301. doi: 10.7498/aps.65.230301
    [8] 马鸿洋, 秦国卿, 范兴奎, 初鹏程. 噪声情况下的量子网络直接通信. 物理学报, 2015, 64(16): 160306. doi: 10.7498/aps.64.160306
    [9] 吴贵铜, 周南润, 龚黎华, 刘三秋. 集体噪声信道上带身份认证的无信息泄露的量子对话协议. 物理学报, 2014, 63(6): 060302. doi: 10.7498/aps.63.060302
    [10] 张沛, 周小清, 李智伟. 基于量子隐形传态的无线通信网络身份认证方案. 物理学报, 2014, 63(13): 130301. doi: 10.7498/aps.63.130301
    [11] 何文奇, 彭翔, 孟祥锋, 刘晓利. 一种基于双光束干涉的分级身份认证方法. 物理学报, 2013, 62(6): 064205. doi: 10.7498/aps.62.064205
    [12] 饶黄云, 刘义保, 江燕燕, 郭立平, 王资生. 三能级混合态的量子几何相位. 物理学报, 2012, 61(2): 020302. doi: 10.7498/aps.61.020302
    [13] 王天银, 秦素娟, 温巧燕, 朱甫臣. 多方控制的量子安全直接通信协议的分析及改进. 物理学报, 2008, 57(12): 7452-7456. doi: 10.7498/aps.57.7452
    [14] 王 剑, 陈皇卿, 张 权, 唐朝京. 多方控制的量子安全直接通信协议. 物理学报, 2007, 56(2): 673-677. doi: 10.7498/aps.56.673
    [15] 狄尧民, 胡宝林, 刘冬冬, 颜士明. 二非正交纯态相混合的concurrence. 物理学报, 2006, 55(8): 3869-3874. doi: 10.7498/aps.55.3869
    [16] 李照鑫, 邹 健, 蔡金芳, 邵 彬. 电荷量子比特与量子化光场之间的纠缠. 物理学报, 2006, 55(4): 1580-1584. doi: 10.7498/aps.55.1580
    [17] 邬鹏举, 李玉德, 林晓燕, 刘安东, 孙天希. x射线在毛细导管中传输的模拟计算. 物理学报, 2005, 54(10): 4478-4482. doi: 10.7498/aps.54.4478
    [18] 邓文基, 刘 平, 徐 晓. 混合态的不确定关系与压缩效应. 物理学报, 2004, 53(11): 3668-3672. doi: 10.7498/aps.53.3668
    [19] 杨东升, 吴柏枚, 李 波, 郑卫华, 李世燕, 陈仙辉, 曹烈兆. MgB2混合态热导率的反常增强. 物理学报, 2003, 52(8): 2015-2019. doi: 10.7498/aps.52.2015
    [20] 匡锦瑜, 邓昆, 黄荣怀. 利用时空混沌同步进行数字加密通信. 物理学报, 2001, 50(10): 1856-1861. doi: 10.7498/aps.50.1856
计量
  • 文章访问数:  1703
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-15
  • 修回日期:  2023-04-10
  • 上网日期:  2023-05-08
  • 刊出日期:  2023-07-05

/

返回文章
返回