搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三能级混合态的量子几何相位

饶黄云 刘义保 江燕燕 郭立平 王资生

引用本文:
Citation:

三能级混合态的量子几何相位

饶黄云, 刘义保, 江燕燕, 郭立平, 王资生

Geometric quantum phase for three-level mixed state

Rao Huang-Yun, Liu Yi-Bao, Jiang Yan-Yan, Guo Li-Ping, Wang Zi-Sheng
PDF
导出引用
  • 把三能级开放系统的密度矩阵按照Gellmann矩阵展开,然后将展开系数和Bloch球中的方位角对应, 从而获得了Poincaré球内部点和复三维Hilbert空间的非单位矢量即波函数的映射.进一步建议用该非单位矢量来定义混合态的量子几何相位.结果显示该几何相位仅仅与复Hilbert投影空间的几何结构有关, 与开放系统具体的演化路径无关;并且该混合态的几何相位依赖于开放系统的反转粒子数,也是描述开放系统混合度的单值光滑曲线,这个结果意味着混合态的演化的确按照几何相位保持其运动记忆.此外,在纯态的限制下,Berry相位是本文定义的几何相位极限情况.
    By expanding the density matrix of the open system in terms of Gell-mann matrix in a three-level system, we parameterize coefficients of expansion by some azimuthal angles and find an identity mapping of the density matrices onto interior points of the unit Poincaré sphere. Thus, the relations between the points on the unit Poincaré sphere and wave functions are extended to connect the interior points in the sphere with the nonunit vector rays corresponding to an open system in complex Hilbert space. Thus,the geometric phases for the open system are proposed to be observed by the nonunit vector rays,where the geometric phase of the pure state is the limiting case of our definition. The results show that this geometric phase merely with duplicate three-dimensional Hilbert projection space geometry structure related, has nothing to do with the open system concrete evolution way; and it depends on population inversion and is a slippy and single-value curve of Bloch radius. Therefore, the mixed state of open system retains indeed a memory of its motion in the form of a geometric phase factor.
    • 基金项目: 国家自然科学基金(批准号:10775108 ),江西省自然科学基金(批准号: 2010GZW0026)和江西省教育厅科技项目(批准号:GJJ10404)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grants No.10775108), the Natural Science Foundation of Jiangxi (Grants No. 2010GZW0026), and the Foundation of Science and Technology of Education Office of Jiangxi Province (Grant No. GJJ10404).
    [1]

    Aharonov Y, Bohm D 1959 Phys. Rev. 115 485

    [2]

    Berry M V 1984 Proc. R. Soc.(London),Ser A 392 45

    [3]

    Fonseca-Romero K M, Aguiar-Pinto A C, Thomaz M T 2002 Physica A 307 142

    [4]

    Li C F, Guo G C 1996 Acta Phys. Sin. 45 897(in Chinese )[李春芳, 郭光灿 1996 物理学报 45 897]

    [5]

    Li B Z, Zhang D G , Wu J H, Yan F L 1997 Acta Phys. Sin. 46 227(in Chinese )[李伯臧, 张德刚, 吴建华, 阎凤利 1997 物理学报 46 227]

    [6]

    Li H Z 2004 Acta Phys. Sin. 53 1643(in Chinese )[李华钟 2004 物理学报 53 1643]

    [7]

    Zheng L M, Wang F Q, Liu S H 2009 Acta Phys. Sin. 58 2430(in Chinese )[郑力明, 王发强, 刘颂豪 2009 物理学报 58 2430]

    [8]

    Berr-Aryeh Y 2004 J. Opt. B:Quantum Semiclass. Opt. 6 R1

    [9]

    Jones J A, Vedral V, Ekert A, Castagnoli G 1999 Nature 403 689

    [10]

    Falci C, Fazio R, Palma G M, Siewert J, Vedral V 2000 Nature 407 355

    [11]

    Wang Z S,Wu C F, Feng X L, Kwek L C, Lai C H, Oh C H, Vedral V 2007 Phys. Rev. A 76 044303

    [12]

    Carollo A, Fuentes-Guridi I, Franca Santos M, Vedral V 2003 Phys. Rev. Lett. 90 160402

    [13]

    Fonseca Romero K M, Aguiar A C, Thomaz M T 2002 Physica A 307 142

    [14]

    Nazir A, Spiller T P, Munro W J 2003 Phys. Rev. A 65 042303

    [15]

    Whitney R S, Gefen Y 2003 Phys. Rev. Lett. 90 190402

    [16]

    Chiara G De, Palma M 2003 Phys. Rev. Lett. 91 090404

    [17]

    Tong D M, Sjoqvist E, Kwek L C, Oh C H 2004 Phys. Rev. Lett. 93 080405

    [18]

    Whitney R S, Makhlin Y, Shnirman A, Gefen Y 2005 Phys. Rev. Lett. 94 070407

    [19]

    Carollo A, Palma G M , zinski A, Santos, Vedral V 2006 Phys. Rev. Lett. 96 150403

    [20]

    Wang Z S, Kwek L C, Lai C H, Oh C H 2006 Europhys. Lett. 74 958

    [21]

    Jiang Y Y, Ji Y H, Xu H L, Hu L Y, Wang Z S, Chen Z Q, Guo L P 2010 Phys. Rev. A 82 062108

    [22]

    Wang Z S, Wu C F, Kwek L C, Lai C H, Oh C H 2007 Phys. Rev. A 75 024102

    [23]

    Lindblad G 1976 Commun. Math. Phys. 48 119

    [24]

    Wang Z S, Kwek L C, Lai C H, Oh C H 2005 The European Physical Journal D 33 285

    [25]

    Wang Z S 2009 Int. J. Theor. Phys. 48 2353

    [26]

    Yu Y X, Chen Z Q, Hu L Y, Tang H S, Wang Z S 2011 Int. J. Theor. Phys. 50 148

  • [1]

    Aharonov Y, Bohm D 1959 Phys. Rev. 115 485

    [2]

    Berry M V 1984 Proc. R. Soc.(London),Ser A 392 45

    [3]

    Fonseca-Romero K M, Aguiar-Pinto A C, Thomaz M T 2002 Physica A 307 142

    [4]

    Li C F, Guo G C 1996 Acta Phys. Sin. 45 897(in Chinese )[李春芳, 郭光灿 1996 物理学报 45 897]

    [5]

    Li B Z, Zhang D G , Wu J H, Yan F L 1997 Acta Phys. Sin. 46 227(in Chinese )[李伯臧, 张德刚, 吴建华, 阎凤利 1997 物理学报 46 227]

    [6]

    Li H Z 2004 Acta Phys. Sin. 53 1643(in Chinese )[李华钟 2004 物理学报 53 1643]

    [7]

    Zheng L M, Wang F Q, Liu S H 2009 Acta Phys. Sin. 58 2430(in Chinese )[郑力明, 王发强, 刘颂豪 2009 物理学报 58 2430]

    [8]

    Berr-Aryeh Y 2004 J. Opt. B:Quantum Semiclass. Opt. 6 R1

    [9]

    Jones J A, Vedral V, Ekert A, Castagnoli G 1999 Nature 403 689

    [10]

    Falci C, Fazio R, Palma G M, Siewert J, Vedral V 2000 Nature 407 355

    [11]

    Wang Z S,Wu C F, Feng X L, Kwek L C, Lai C H, Oh C H, Vedral V 2007 Phys. Rev. A 76 044303

    [12]

    Carollo A, Fuentes-Guridi I, Franca Santos M, Vedral V 2003 Phys. Rev. Lett. 90 160402

    [13]

    Fonseca Romero K M, Aguiar A C, Thomaz M T 2002 Physica A 307 142

    [14]

    Nazir A, Spiller T P, Munro W J 2003 Phys. Rev. A 65 042303

    [15]

    Whitney R S, Gefen Y 2003 Phys. Rev. Lett. 90 190402

    [16]

    Chiara G De, Palma M 2003 Phys. Rev. Lett. 91 090404

    [17]

    Tong D M, Sjoqvist E, Kwek L C, Oh C H 2004 Phys. Rev. Lett. 93 080405

    [18]

    Whitney R S, Makhlin Y, Shnirman A, Gefen Y 2005 Phys. Rev. Lett. 94 070407

    [19]

    Carollo A, Palma G M , zinski A, Santos, Vedral V 2006 Phys. Rev. Lett. 96 150403

    [20]

    Wang Z S, Kwek L C, Lai C H, Oh C H 2006 Europhys. Lett. 74 958

    [21]

    Jiang Y Y, Ji Y H, Xu H L, Hu L Y, Wang Z S, Chen Z Q, Guo L P 2010 Phys. Rev. A 82 062108

    [22]

    Wang Z S, Wu C F, Kwek L C, Lai C H, Oh C H 2007 Phys. Rev. A 75 024102

    [23]

    Lindblad G 1976 Commun. Math. Phys. 48 119

    [24]

    Wang Z S, Kwek L C, Lai C H, Oh C H 2005 The European Physical Journal D 33 285

    [25]

    Wang Z S 2009 Int. J. Theor. Phys. 48 2353

    [26]

    Yu Y X, Chen Z Q, Hu L Y, Tang H S, Wang Z S 2011 Int. J. Theor. Phys. 50 148

  • [1] 李海鹏, 吴潇, 丁海洋, 辛可为, 王光明. 基于复合超构表面的宽带圆极化双功能器件设计. 物理学报, 2021, 70(2): 027803. doi: 10.7498/aps.70.20201150
    [2] 刘兆斌, 李凯, 曾天海, 王锋, 宋新兵, 邵彬, 邹健. 类氢原子核质量对电子状态的影响. 物理学报, 2021, 70(7): 070301. doi: 10.7498/aps.70.20201754
    [3] 罗慧玲, 凌晓辉, 周新星, 罗海陆. 光束正入射至界面时的自旋-轨道相互作用及其增强. 物理学报, 2020, 69(3): 034202. doi: 10.7498/aps.69.20191218
    [4] 范洪义, 楼森岳, 潘孝胤, 笪诚. 量子力学混合态表象. 物理学报, 2014, 63(19): 190302. doi: 10.7498/aps.63.190302
    [5] 胡要花. 运动原子多光子J-C模型中的熵交换与纠缠. 物理学报, 2012, 61(12): 120302. doi: 10.7498/aps.61.120302
    [6] 单传家. 具有三体相互作用的自旋链系统中的几何相位与量子相变 . 物理学报, 2012, 61(22): 220302. doi: 10.7498/aps.61.220302
    [7] 郑力明, 刘颂豪, 王发强. 非马尔可夫环境下原子的几何相位演化. 物理学报, 2009, 58(4): 2430-2434. doi: 10.7498/aps.58.2430
    [8] 马瑞琼, 李永放, 时 坚. 相干瞬态的量子干涉效应和Berry相位. 物理学报, 2008, 57(7): 4083-4090. doi: 10.7498/aps.57.4083
    [9] 周并举, 刘小娟, 方卯发, 周清平, 刘明伟. 负值量子条件熵与双量子系统一类混合态纠缠量度. 物理学报, 2007, 56(7): 3937-3944. doi: 10.7498/aps.56.3937
    [10] 郑映鸿, 陈 童, 王 平, 常 哲. 几何相位的伽利略变换性质. 物理学报, 2007, 56(11): 6199-6203. doi: 10.7498/aps.56.6199
    [11] 李照鑫, 邹 健, 蔡金芳, 邵 彬. 电荷量子比特与量子化光场之间的纠缠. 物理学报, 2006, 55(4): 1580-1584. doi: 10.7498/aps.55.1580
    [12] 狄尧民, 胡宝林, 刘冬冬, 颜士明. 二非正交纯态相混合的concurrence. 物理学报, 2006, 55(8): 3869-3874. doi: 10.7498/aps.55.3869
    [13] 庄 飞, 沈建其. 双轴各向异性负折射率材料光纤中光子波函数几何相位研究. 物理学报, 2005, 54(2): 955-960. doi: 10.7498/aps.54.955
    [14] 沈建其, 庄 飞. 螺旋光纤系统中非绝热条件几何相移. 物理学报, 2005, 54(3): 1048-1052. doi: 10.7498/aps.54.1048
    [15] 邓文基, 刘 平, 徐 晓. 混合态的不确定关系与压缩效应. 物理学报, 2004, 53(11): 3668-3672. doi: 10.7498/aps.53.3668
    [16] 杨东升, 吴柏枚, 李 波, 郑卫华, 李世燕, 陈仙辉, 曹烈兆. MgB2混合态热导率的反常增强. 物理学报, 2003, 52(8): 2015-2019. doi: 10.7498/aps.52.2015
    [17] 胡国琦, 李康. 有磁单极子存在下的Aharnov-Bohm效应. 物理学报, 2002, 51(6): 1208-1213. doi: 10.7498/aps.51.1208
    [18] 朱红毅, 沈建其. 一般三生成元含时系统的精确解. 物理学报, 2002, 51(7): 1448-1452. doi: 10.7498/aps.51.1448
    [19] 石名俊, 杜江峰, 朱栋培, 阮图南. 混合纠缠态的几何描述. 物理学报, 2000, 49(10): 1912-1918. doi: 10.7498/aps.49.1912
    [20] 朱栋培, 王桂星, 王仁川. 量子混合态的统计角. 物理学报, 1992, 41(4): 543-549. doi: 10.7498/aps.41.543
计量
  • 文章访问数:  4629
  • PDF下载量:  502
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-27
  • 修回日期:  2011-04-23
  • 刊出日期:  2012-01-05

三能级混合态的量子几何相位

  • 1. 东华理工大学核工程技术学院, 抚州 344000;
  • 2. 安庆师范学院物理系, 安庆 246011;
  • 3. 武汉大学物理科学与技术学院, 武汉 430027;
  • 4. 江西师范大学物理与通信电子学院, 南昌 330022
    基金项目: 国家自然科学基金(批准号:10775108 ),江西省自然科学基金(批准号: 2010GZW0026)和江西省教育厅科技项目(批准号:GJJ10404)资助的课题.

摘要: 把三能级开放系统的密度矩阵按照Gellmann矩阵展开,然后将展开系数和Bloch球中的方位角对应, 从而获得了Poincaré球内部点和复三维Hilbert空间的非单位矢量即波函数的映射.进一步建议用该非单位矢量来定义混合态的量子几何相位.结果显示该几何相位仅仅与复Hilbert投影空间的几何结构有关, 与开放系统具体的演化路径无关;并且该混合态的几何相位依赖于开放系统的反转粒子数,也是描述开放系统混合度的单值光滑曲线,这个结果意味着混合态的演化的确按照几何相位保持其运动记忆.此外,在纯态的限制下,Berry相位是本文定义的几何相位极限情况.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回