搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度纠缠重整化假设的量子网络通信资源优化方案

赖红 任黎 黄钟锐 万林春

引用本文:
Citation:

基于多尺度纠缠重整化假设的量子网络通信资源优化方案

赖红, 任黎, 黄钟锐, 万林春

Quantum Network Communication Resource Optimization Scheme Based on Multi-Scale Entanglement Renormalization Ansatz

Lai Hong, Ren Li, Huang Zhong-Rui, Wan Lin-Chun
PDF
HTML
导出引用
  • 量子密钥分发(Quantum Key Distribution, QKD)技术因其在确保通信安全方面的潜力而备受关注, 但其在大规模网络中的应用受限于量子资源的稀缺性和低效的利用率. 尤其在Ekert91协议中, 尽管利用了纠缠态对进行密钥生成, 实际参与密钥生成的纠缠对数量有限, 导致资源利用率不高. 为了克服这一挑战, 本文提出一种基于多尺度纠缠重整化假设(Multiscale Entanglement Renormalization Ansatz, MERA)的QKD优化方案, 以提高纠缠资源的利用效率. 该方案利用MERA的分层结构和多体态压缩特性, 有效减少量子存储需求, 并显著提升纠缠对的利用率. 实验模拟显示, 在相同的加密请求(1024比特)和物理条件下, 与传统方法相比, 本文的方案节省了124,151对纠缠资源, 既显著提高了资源的利用效率, 又未降低密钥生成过程的安全性, 有助于推动QKD技术在资源受限的环境中进一步发展和应用.
    Quantum Key Distribution (QKD) is a pivotal technology in the field of secure communications, leveraging the principles of quantum mechanics to enable theoretically unbreakable encryption. However, despite its promise, QKD faces significant challenges in achieving large-scale deployment. The primary hurdle lies in the scarcity of quantum resources, especially entangled photon pairs, which are fundamental to protocols such as Ekert91. In traditional QKD implementations, only a fraction of the entangled pairs generated contribute to raw key production, leading to substantial inefficiencies and resource wastage. Addressing this limitation is crucial to the advancement and scalability of QKD networks.This paper introduces an innovative approach to QKD by integrating the Multiscale Entanglement Renormalization Ansatz (MERA), a technique originally developed for many-body quantum systems. By utilizing MERA's hierarchical structure, the proposed method not only improves the efficiency of entanglement distribution but also reduces the consumption of quantum resources. Specifically, MERA compresses many-body quantum states into lower-dimensional representations, allowing for the transmission and storage of entanglement in a more efficient manner. This compression significantly reduces the number of qubits required, optimizing both entanglement utilization and storage capacity in quantum networks.To evaluate the performance of this method, we conducted simulations under standardized conditions. The simulations assumed a 1024-bit encryption request, an 8% error rate, an average path length of 4 hops in the quantum network, and a 95% success rate for both link entanglement generation and entanglement swapping operations. These parameters mirror realistic physical conditions found in contemporary QKD networks. The results demonstrate that the MERA-based approach saves an impressive 124,151 entangled pairs compared to traditional QKD protocols. This substantial reduction in resource consumption underscores the potential of MERA to revolutionize the efficiency of QKD systems without compromising security. Importantly, the security of the key exchange process remains intact, as the method inherently adheres to the principles of quantum mechanics, particularly the no-cloning theorem and the use of randomness in decompression layers.The paper concludes that MERA not only enhances the scalability of QKD by optimizing quantum resource allocation but also maintains the security guarantees essential for practical cryptographic applications. By integrating MERA into existing QKD frameworks, we can significantly lower the resource overhead, making large-scale, secure quantum communication more feasible. These findings contribute a new dimension to the field of quantum cryptography, suggesting that advanced quantum many-body techniques like MERA hold the potential to unlock the full potential of quantum networks in real-world scenarios.
  • 图 1  MERA结构: (a) 二元MERA; (b) 三元MERA; (c) 解纠缠算符U; (d) 等距映射W

    Fig. 1.  The structure of MERA: (a) Binary MERA; (b) Ternary MERA; (c) Disentangling operator U; (d) Isometric mapping W.

    图 2  U与$ |00\rangle, |01\rangle, |10\rangle, |11\rangle $的映射关系

    Fig. 2.  The mapping relationship between U and $ |00\rangle, |01\rangle, |10\rangle, |11\rangle $.

    图 3  W与$ |0\rangle, |1\rangle $的映射关系

    Fig. 3.  The mapping relationship between W and $ |0\rangle, |1\rangle $.

    图 4  网络结构

    Fig. 4.  Network structure.

    图 5  量子密钥分发流程图

    Fig. 5.  Quantum key distribution flowchart.

    图 6  状态表

    Fig. 6.  State table.

    图 7  传统方式与MERA方式下量子资源消耗随需求变化的关系

    Fig. 7.  Relationship between quantum resource consumption and demand in traditional versus MERA.

    图 8  传统方式与MERA方式下经典资源消耗随需求变化的关系

    Fig. 8.  Relationship between classical resource consumption and demand in traditional versus MERA.

    图 9  传统方式与MERA方式下总资源消耗随需求变化的关系

    Fig. 9.  The relationship between total resource consumption and demand in traditional versus MERA.

    图 10  所需量子资源随平均路径跳数从1到10的变化情况

    Fig. 10.  Variation in quantum resource requirements as average path length increases from 1 to 10.

    图 11  平均路径跳数为4、5、6时, 量子资源消耗随请求量的变化

    Fig. 11.  Quantum Resource Variation with Request Volume at Average Path Lengths of 4, 5, and 6.

    图 12  误码率从1%—10%变化时, 所需量子资源的增长情况

    Fig. 12.  Variation in Quantum Resource Requirements as Error Rate Changes from 1% to 10%.

    图 13  误码率为7%、8%、9%时, 量子资源随请求量变化的情况

    Fig. 13.  Quantum Resource Variation with Request Volume at Error Rates of 7%, 8%, and 9%.

    图 14  链路纠缠成功率从70%到95%变化时, 所需量子资源数量的变化趋势

    Fig. 14.  Quantum Resource Variation as Link Entanglement Success Rate Ranges from 70% to 95%.

    图 15  链路纠缠成功率分别取85%、90%、95%时, 量子资源的变化趋势

    Fig. 15.  Quantum Resource Variation at Link Entanglement Success Rates of 85%, 90%, and 95%.

    图 16  纠缠交换成功率从70%到95%变化时, 所需量子资源数量的变化趋势

    Fig. 16.  Quantum Resource Variation as Entanglement Swapping Success Rate Ranges from 70% to 95%.

    图 17  纠缠交换成功率为85%、90%、95%时, 量子资源的变化趋势

    Fig. 17.  Quantum Resource Variation at Entanglement Swapping Success Rates of 85%, 90%, and 95%.

    表 1  网络请求属性及其取值范围

    Table 1.  Network request attributes and their value ranges.

    属性 描述 取值范围
    S 发送方 N/A
    D 接收方 N/A
    k 需求量 $ [1024, 4096] $
    P 优先级 $ [1, 5] $
    $ \Delta t $ 可接受时延 $ [1, 60] $
    下载: 导出CSV
  • [1]

    Wootters W K, Zurek W H 1982 Nature 299 802Google Scholar

    [2]

    Peev M, Pacher C, Alléaume R 2009 New J. Phys. 11 075001Google Scholar

    [3]

    Dianati M, Alléaume R, Gagnaire M 2008 Security Commun. Networks 1 57Google Scholar

    [4]

    Aguado A, Lopez V, Lopez D 2019 IEEE Commun. Mag. 57 20

    [5]

    Donetti L, Hurtado P I, Munoz M A 2005 Phys. Rev. Lett. 95 188701Google Scholar

    [6]

    Li Z, Xue K P, Li J 2023 IEEE Commun. Surv. Tutor. 25 2133Google Scholar

    [7]

    Pant M, Krovi H, Towsley D 2019 npj Quantum Inf. 5 25Google Scholar

    [8]

    Shi S, Zhang X, Qian C 2024 IEEE/ACM Trans. Netw. 32 2205Google Scholar

    [9]

    Li J, Wang M, Xue K P 2022 IEEE Trans. Commun. 70 6748Google Scholar

    [10]

    Gu H Y, Li Z Y 2024 IEEE/ACM Trans. Netw. 1 125

    [11]

    Ekert A 1991 Phys. Rev. Lett. 67 661Google Scholar

    [12]

    Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68 557Google Scholar

    [13]

    Li C, Li T, Liu Y X 2021 npj Quantum Inf. 7 10Google Scholar

    [14]

    赖红 2023 物理学报 72 149

    Lai H 2023 Acta Phys. Sin. 72 149

    [15]

    Kim Y H, Kulik S P, Shih Y 2001 Phys. Rev. Lett. 86 1370Google Scholar

    [16]

    Cincio L, Dziarmaga J, Rams M M 2008 Phys. Rev. Lett. 100 240603Google Scholar

    [17]

    Lai H, Pieprzyk J, Pan L 2022 Phys. Rev. A 106 052403Google Scholar

    [18]

    Pirandola S, García-Patrón R, Braunstein S L 2009 Phys. Rev. Lett. 102 050503Google Scholar

    [19]

    Pirandola S, Laurenza R, Ottaviani C 2017 Nat. Commun. 8 1500Google Scholar

    [20]

    Wehner S, Elkouss D, Hanson R 2018 Science 362 9288Google Scholar

    [21]

    Bernien H, Hensen B, Pfaff W 2013 Nature 497 86Google Scholar

    [22]

    Olmschenk S, Matsukevich D N, Maunz P 2009 Science 323 486Google Scholar

    [23]

    Pan J W, Bouwmeester D, Weinfurter H 1998 Phys. Rev. Lett. 80 3891Google Scholar

    [24]

    Bravyi S, Cross A W, Gambetta J M 2024 Nature 627 778Google Scholar

    [25]

    Bersin E, Sutula M, Huan Y Q 2024 PRX Quantum 5 010303Google Scholar

    [26]

    Fan R, Bao Y, Altman E 2024 PRX Quantum 5 020343Google Scholar

    [27]

    Zhang Q, Lai H, Pieprzyk J 2022 Phys. Rev. A 105 032439Google Scholar

    [28]

    Lai H, Pieprzyk J, Pan L 2023 Sci. China Inf. Sci. 66 180510Google Scholar

    [29]

    Shannon C E 1949 Bell Syst. Tech. J. 28 656Google Scholar

    [30]

    Orús R 2014 Ann. Phys. 349 117Google Scholar

    [31]

    Chen L Q, Zhao M N, Yu K L 2021 Quantum Information Processing. 20 1Google Scholar

    [32]

    Elkouss D, Martinez J, Lancho D 2010 IEEE Information Theory Workshop on Information Theory Cairo, Egypt, October 10—13, 2010 p1

    [33]

    Gisin N, Ribordy G, Tittel W 2002 Rev. Mod. Phys. 74 145Google Scholar

    [34]

    Wu X, Zhu W P, Yan J 2017 IEEE Trans. Veh. Technol. 66 8223Google Scholar

    [35]

    Bennett C H, Brassard G, Robert J M 1988 SIAM J. Comput. 17 210Google Scholar

    [36]

    Eibl M, Kiesel N, Bourennane M, et al 2004 Phys. Rev. Lett. 92 077901Google Scholar

    [37]

    Briegel H J, Raussendorf R 2001 Phys. Rev. Lett. 86 910Google Scholar

    [38]

    Affleck I, Kennedy T, Lieb E H 2004 Condensed Matter Phys. Exactly Soluble Models: Selecta Elliott H. Lieb (Berlin: Springer-Verlag) pp249-252

    [39]

    Affleck I 1989 J. Phys. Condens. Matter 1 3047Google Scholar

  • [1] 陈越, 刘长杰, 郑伊佳, 曹原, 郭明轩, 朱佳莉, 周星宇, 郁小松, 赵永利, 王琴. 多域跨协议量子网络的域间密钥业务按需提供策略. 物理学报, doi: 10.7498/aps.73.20240819
    [2] 贺英, 王天一, 李莹莹. 线性光学克隆机改进的离散极化调制连续变量量子密钥分发可组合安全性分析. 物理学报, doi: 10.7498/aps.20241094
    [3] 贺英, 王天一, 李莹莹. 线性光学克隆机改进的离散极化调制连续变量量子密钥分发可组合安全性分析. 物理学报, doi: 10.7498/aps.73.20241094
    [4] 周江平, 周媛媛, 周学军. 非对称信道相位匹配量子密钥分发. 物理学报, doi: 10.7498/aps.72.20230652
    [5] 周阳, 马啸, 周星宇, 张春辉, 王琴. 实用化态制备误差容忍参考系无关量子密钥分发协议. 物理学报, doi: 10.7498/aps.72.20231144
    [6] 朱佳莉, 曹原, 张春辉, 王琴. 实用化量子密钥分发光网络中的资源优化配置. 物理学报, doi: 10.7498/aps.72.20221661
    [7] 孟杰, 徐乐辰, 张成峻, 张春辉, 王琴. 标记单光子源在量子密钥分发中的应用. 物理学报, doi: 10.7498/aps.71.20220344
    [8] 陈以鹏, 刘靖阳, 朱佳莉, 方伟, 王琴. 机器学习在量子通信资源优化配置中的应用. 物理学报, doi: 10.7498/aps.71.20220871
    [9] 叶炜, 郭迎, 夏莹, 钟海, 张欢, 丁建枝, 胡利云. 基于量子催化的离散调制连续变量量子密钥分发. 物理学报, doi: 10.7498/aps.69.20191689
    [10] 周飞, 雍海林, 李东东, 印娟, 任继刚, 彭承志. 基于不同介质间量子密钥分发的研究. 物理学报, doi: 10.7498/aps.63.140303
    [11] 徐兵杰, 唐春明, 陈晖, 张文政, 朱甫臣. 利用无噪线性光放大器增加连续变量量子密钥分发最远传输距离. 物理学报, doi: 10.7498/aps.62.070301
    [12] 胡华鹏, 张 静, 王金东, 黄宇娴, 路轶群, 刘颂豪, 路 巍. 双协议量子密钥分发系统实验研究. 物理学报, doi: 10.7498/aps.57.5605
    [13] 张 静, 王发强, 赵 峰, 路轶群, 刘颂豪. 时间和相位混合编码的量子密钥分发方案. 物理学报, doi: 10.7498/aps.57.4941
    [14] 陈 霞, 王发强, 路轶群, 赵 峰, 李明明, 米景隆, 梁瑞生, 刘颂豪. 运行双协议相位调制的量子密钥分发系统. 物理学报, doi: 10.7498/aps.56.6434
    [15] 陈 杰, 黎 遥, 吴 光, 曾和平. 偏振稳定控制下的量子密钥分发. 物理学报, doi: 10.7498/aps.56.5243
    [16] 冯发勇, 张 强. 基于超纠缠交换的量子密钥分发. 物理学报, doi: 10.7498/aps.56.1924
    [17] 林青群, 王发强, 米景隆, 梁瑞生, 刘颂豪. 基于随机相位编码的确定性量子密钥分配. 物理学报, doi: 10.7498/aps.56.5796
    [18] 赵 峰, 路轶群, 王发强, 陈 霞, 李明明, 郭邦红, 廖常俊, 刘颂豪. 基于微弱相干脉冲稳定差分相位量子密钥分发. 物理学报, doi: 10.7498/aps.56.2175
    [19] 吴 光, 周春源, 陈修亮, 韩晓红, 曾和平. 长距离长期稳定的量子密钥分发系统. 物理学报, doi: 10.7498/aps.54.3622
    [20] 马海强, 李亚玲, 赵 环, 吴令安. 基于双偏振分束器的量子密钥分发系统. 物理学报, doi: 10.7498/aps.54.5014
计量
  • 文章访问数:  140
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2024-11-06

/

返回文章
返回