搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非对称信道相位匹配量子密钥分发

周江平 周媛媛 周学军

引用本文:
Citation:

非对称信道相位匹配量子密钥分发

周江平, 周媛媛, 周学军

Asymmetric channel phase matching quantum key distribution

Zhou Jiang-Ping, Zhou Yuan-Yuan, Zhou Xue-Jun
PDF
HTML
导出引用
  • 经典相位匹配量子密钥分发要求信道对称, 而实际应用中非对称信道应用场景更加普遍. 为研究信道非对称性对相位匹配协议性能的影响, 基于经典相位匹配协议框架提出非对称相位匹配协议, 建立相关数学仿真模型, 并对信道非对称情况下诱骗态和统计波动等对系统的影响进行仿真分析. 结果表明: 信道非对称性对系统性能影响巨大, 随着信道衰减差异的增大系统性能减小, 且减小速度逐渐加快, 超过4 dB时已无法生成密钥; 诱骗态方案不能改变系统对信道衰减差异的容忍度, 但在信道衰减差异较大时, 增加诱骗态可以显著提升系统性能; 随着数据长度的增大, 系统对信道衰减差异的容忍度逐渐提升, 当数据长度大于1012时, 这种提升不再明显, 与对称信道相比, 当信道衰减差异为2 dB时, 随着数据长度的增大, 系统性能提升更加明显.
    The phase-matching protocol is a practical and promising protocol that can surpass the linear key generation rate boundary. However, classical phase-matching quantum key distribution requires the channel attenuation between communicating parties to be symmetric. In practice, channels used are often asymmetric, owing to geographical reasons in a quantum key distribution network. To enhance the practicality of phase-matching, this paper proposes an asymmetric phase-matching protocol based on the classical framework and establishes a relevant mathematical simulation model to study the influence of channel asymmetry on its performance. The simulation results show that channel asymmetry significantly affects the count rate, error rate, gain, and quantum bit error rate (QBER), ultimately, system performance. As the channel attenuation difference increases, the system performance decreases and the rate of decrease accelerates. Key generation becomes impossible when the channel attenuation difference exceeds 4 dB. Although the decoy-state scheme cannot change the system's tolerance to channel attenuation difference, when the channel attenuation difference is large, the increasing of the number of decoy states significantly can improve system performance, with a three-decoy-state phase-matching protocol outperforming a two-decoy-state protocol. Considering the limited data length, the system performance is improved as the data length increases, and the tolerance to channel attenuation differences gradually increases. When the data length exceeds 1012, this improvement does not continue any more. The system cannot break through the boundary of linear key generation rate when the channel attenuation difference is 2 dB and the data length is less than 1012. Comparing with symmetric channels, the system performance improvement is very significant under asymmetric channel conditions as the data length increases.
      通信作者: 周媛媛, EPJZYY@aliyun.com
      Corresponding author: Zhou Yuan-Yuan, EPJZYY@aliyun.com
    [1]

    Bennett C H, Brassard G 1984 Process IEEE International Conference Computer System Signal Processing Bangalore, India, December 9–12, 1984 pp175–179

    [2]

    Lo H K, Ma X, Chen K 2005 Phys. Rev. Lett. 94 230504Google Scholar

    [3]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [4]

    Sasaki T, Yamamoto Y, Koashi M 2014 Nature 509 475Google Scholar

    [5]

    Takeoka M, Guha S, Wilde M M 2014 Nat. Commun. 5 5235Google Scholar

    [6]

    Pirandola S, Laurenza R, Ottaviani C, Banchi L 2017 Nat. Commun. 8 15043Google Scholar

    [7]

    Lucamarini M, Yuan Z L, Dynes J F, Shields A J 2018 Nature 557 400Google Scholar

    [8]

    Ma X F, Zeng P, Zhou H Y 2018 Phys. Rev. X 8 031043Google Scholar

    [9]

    Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [10]

    Lin J, Lütkenhaus N 2018 Phys. Rev. A 98 042332Google Scholar

    [11]

    Zeng P, Wu W, Ma X 2020 Phys. Rev. Appl. 13 064013Google Scholar

    [12]

    Shen Z, Chen G, Wang L, Li W, Mao Q, Zhao S 2022 Laser Phys. Lett. 19 095202Google Scholar

    [13]

    Yu B, Mao Q P, Zhu X M, Yu Y, Zhao S M 2021 Phys. Lett. A 418 127702Google Scholar

    [14]

    Yu Y, Wang L, Zhao S, Mao Q 2022 Europhys. Lett. 138 28001Google Scholar

    [15]

    Cui W, Song Z, Huang G, Jiao R 2022 Quantum Inf. Process. 21 313Google Scholar

    [16]

    Han L, Yu Y, Lu W, Xue K, Li W, Zhao S 2022 Quantum Inf. Process. 22 37Google Scholar

    [17]

    Li W T, Wang L, Li W, Zhao S M 2022 Chin. Phys. B 31 050310Google Scholar

    [18]

    Fang X T, Zeng P, Liu H, Zou M, Wu W, Tang Y L, Sheng Y J, Xiang Y, Zhang W, Li H, Wang Z, You L, Li M J, Chen H, Chen Y A, Zhang Q, Peng C Z, Ma X, Chen T Y, Pan J W 2020 Nat. Photonics 14 422Google Scholar

    [19]

    Ma H Q, Han Y, Dou T, Li P 2023 Chin. Phys. B 32 020304Google Scholar

    [20]

    Wang W, Xu F, Lo H K 2019 Phys. Rev. X 9 041012Google Scholar

    [21]

    Yu Y, Wang L, Zhao S, Mao Q 2021 13 th International Conference on Wireless Communications and Signal Processing Changsha, China, October 20, 2021 pp1–4

    [22]

    Lo H K, Chau H F 1999 Science 283 2050Google Scholar

    [23]

    Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441Google Scholar

    [24]

    Wang W, Lo H K 2020 New J. Phys. 22 013020Google Scholar

  • 图 1  (a) 非对称PM协议模型; (b) 基于纠缠的PM协议模型

    Fig. 1.  (a) Asymmetric PM protocol model; (b) entanglement-based PM protocol model.

    图 2  单光子计数率和全局增益随信道衰减差变化情况 (a)单光子计数率Y1; (b)全局增益Qμ

    Fig. 2.  Variation of the single-photon yield and total gain with channel attenuation difference: (a) Single photon counting rate Y1; (b) global gain Qμ.

    图 3  量子比特误码率和相位错误率随信道衰减差的变化

    Fig. 3.  Variation of QBER and phase error rate with channel attenuation difference.

    图 4  PM协议密钥生成率随信道衰减差的变化

    Fig. 4.  Variation of PM protocol key generation rate with channel attenuation difference.

    图 5  不同信道差异时密钥生成率随信道总衰减的变化

    Fig. 5.  Variation of key generation rate with total channel attenuation for different channel differences.

    图 6  不同诱骗态数量时密钥生成率随信道传输效率变化等高线图 (a) 二诱骗态; (b)三诱骗态

    Fig. 6.  The contour plot of key generation rate as a function of channel transmission efficiency for different numbers of decoy states: (a) Two-decoy-state; (b) three-decoy-state.

    图 7  不同诱骗态数量时密钥生成率随信道总衰减变化情况

    Fig. 7.  Variation of key generation rate with total channel attenuation for different decoy states.

    图 8  不同数据长度情况下密钥生成率随信道传输率变化图像 (a) N = 108; (b) N = 1010; (c) N = 1012; (d) N = 1016

    Fig. 8.  Image of key generation rate changing with channel transmission rate under different data lengths: (a) N = 108; (b) N = 1010; (c) N = 1012; (d) N = 1016.

    图 9  不同信道衰减差情况下数据长度对密钥生成率的影响

    Fig. 9.  Effect of data length on key rate under different channel attenuation differences.

    表 1  主要仿真参数

    Table 1.  The Main parameters in numerical simulations.

    参数暗记数
    pd
    纠错
    效率$ f $
    相位分
    片数$ M $
    置信度
    1 – θ
    取值$ 8 \times {10^{ - 8}} $1.1516$1-5.73 \times {10^{ - 7} }$
    下载: 导出CSV
  • [1]

    Bennett C H, Brassard G 1984 Process IEEE International Conference Computer System Signal Processing Bangalore, India, December 9–12, 1984 pp175–179

    [2]

    Lo H K, Ma X, Chen K 2005 Phys. Rev. Lett. 94 230504Google Scholar

    [3]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [4]

    Sasaki T, Yamamoto Y, Koashi M 2014 Nature 509 475Google Scholar

    [5]

    Takeoka M, Guha S, Wilde M M 2014 Nat. Commun. 5 5235Google Scholar

    [6]

    Pirandola S, Laurenza R, Ottaviani C, Banchi L 2017 Nat. Commun. 8 15043Google Scholar

    [7]

    Lucamarini M, Yuan Z L, Dynes J F, Shields A J 2018 Nature 557 400Google Scholar

    [8]

    Ma X F, Zeng P, Zhou H Y 2018 Phys. Rev. X 8 031043Google Scholar

    [9]

    Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [10]

    Lin J, Lütkenhaus N 2018 Phys. Rev. A 98 042332Google Scholar

    [11]

    Zeng P, Wu W, Ma X 2020 Phys. Rev. Appl. 13 064013Google Scholar

    [12]

    Shen Z, Chen G, Wang L, Li W, Mao Q, Zhao S 2022 Laser Phys. Lett. 19 095202Google Scholar

    [13]

    Yu B, Mao Q P, Zhu X M, Yu Y, Zhao S M 2021 Phys. Lett. A 418 127702Google Scholar

    [14]

    Yu Y, Wang L, Zhao S, Mao Q 2022 Europhys. Lett. 138 28001Google Scholar

    [15]

    Cui W, Song Z, Huang G, Jiao R 2022 Quantum Inf. Process. 21 313Google Scholar

    [16]

    Han L, Yu Y, Lu W, Xue K, Li W, Zhao S 2022 Quantum Inf. Process. 22 37Google Scholar

    [17]

    Li W T, Wang L, Li W, Zhao S M 2022 Chin. Phys. B 31 050310Google Scholar

    [18]

    Fang X T, Zeng P, Liu H, Zou M, Wu W, Tang Y L, Sheng Y J, Xiang Y, Zhang W, Li H, Wang Z, You L, Li M J, Chen H, Chen Y A, Zhang Q, Peng C Z, Ma X, Chen T Y, Pan J W 2020 Nat. Photonics 14 422Google Scholar

    [19]

    Ma H Q, Han Y, Dou T, Li P 2023 Chin. Phys. B 32 020304Google Scholar

    [20]

    Wang W, Xu F, Lo H K 2019 Phys. Rev. X 9 041012Google Scholar

    [21]

    Yu Y, Wang L, Zhao S, Mao Q 2021 13 th International Conference on Wireless Communications and Signal Processing Changsha, China, October 20, 2021 pp1–4

    [22]

    Lo H K, Chau H F 1999 Science 283 2050Google Scholar

    [23]

    Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441Google Scholar

    [24]

    Wang W, Lo H K 2020 New J. Phys. 22 013020Google Scholar

  • [1] 袁金健, 顾民, 黄润生. 运动界面的电磁波相位匹配. 物理学报, 2024, 73(13): 134201. doi: 10.7498/aps.73.20240269
    [2] 孟杰, 徐乐辰, 张成峻, 张春辉, 王琴. 标记单光子源在量子密钥分发中的应用. 物理学报, 2022, 71(17): 170304. doi: 10.7498/aps.71.20220344
    [3] 曹若琳, 彭清轩, 王金东, 陈勇杰, 黄云飞, 於亚飞, 魏正军, 张智明. 基于单光子计数反馈的低噪声光纤信道波分复用实时偏振补偿系统. 物理学报, 2022, 71(13): 130306. doi: 10.7498/aps.71.20220120
    [4] 陈艳辉, 王金东, 杜聪, 马瑞丽, 赵家钰, 秦晓娟, 魏正军, 张智明. 光纤偏振编码量子密钥分发系统荧光边信道攻击与防御. 物理学报, 2019, 68(13): 130301. doi: 10.7498/aps.68.20190464
    [5] 陈汉武, 李科, 赵生妹. 基于相位匹配的量子行走搜索算法及电路实现. 物理学报, 2015, 64(24): 240301. doi: 10.7498/aps.64.240301
    [6] 周飞, 雍海林, 李东东, 印娟, 任继刚, 彭承志. 基于不同介质间量子密钥分发的研究. 物理学报, 2014, 63(14): 140303. doi: 10.7498/aps.63.140303
    [7] 魏正军, 万伟, 王金东, 廖常俊, 刘颂豪. 基于法拉第-麦克尔逊干涉检测的低误码差分相位编码实验系统. 物理学报, 2011, 60(9): 094216. doi: 10.7498/aps.60.094216.2
    [8] 任爱红, 刘正颖, 张蓉竹, 刘静伦, 孙年春. 准相位匹配倍频系统的带宽性质研究. 物理学报, 2010, 59(10): 7050-7054. doi: 10.7498/aps.59.7050
    [9] 王金东, 魏正军, 张辉, 张华妮, 陈帅, 秦晓娟, 郭健平, 廖常俊, 刘颂豪. 长程光纤传输的时间抖动对相位编码量子密钥分发系统的影响. 物理学报, 2010, 59(8): 5514-5522. doi: 10.7498/aps.59.5514
    [10] 肖海林, 欧阳缮, 聂在平. MIMO量子信道的空间自由度研究. 物理学报, 2009, 58(6): 3685-3691. doi: 10.7498/aps.58.3685
    [11] 朱畅华, 陈南, 裴昌幸, 权东晓, 易运晖. 基于信道估计的自适应连续变量量子密钥分发方法. 物理学报, 2009, 58(4): 2184-2188. doi: 10.7498/aps.58.2184
    [12] 胡华鹏, 张 静, 王金东, 黄宇娴, 路轶群, 刘颂豪, 路 巍. 双协议量子密钥分发系统实验研究. 物理学报, 2008, 57(9): 5605-5611. doi: 10.7498/aps.57.5605
    [13] 张 静, 王发强, 赵 峰, 路轶群, 刘颂豪. 时间和相位混合编码的量子密钥分发方案. 物理学报, 2008, 57(8): 4941-4946. doi: 10.7498/aps.57.4941
    [14] 冯发勇, 张 强. 基于超纠缠交换的量子密钥分发. 物理学报, 2007, 56(4): 1924-1927. doi: 10.7498/aps.56.1924
    [15] 陈 杰, 黎 遥, 吴 光, 曾和平. 偏振稳定控制下的量子密钥分发. 物理学报, 2007, 56(9): 5243-5247. doi: 10.7498/aps.56.5243
    [16] 林一满, 梁瑞生, 路轶群, 路 洪, 郭邦红, 刘颂豪. 自动补偿高效的差分相位编码QKD系统. 物理学报, 2007, 56(7): 3931-3936. doi: 10.7498/aps.56.3931
    [17] 林青群, 王发强, 米景隆, 梁瑞生, 刘颂豪. 基于随机相位编码的确定性量子密钥分配. 物理学报, 2007, 56(10): 5796-5801. doi: 10.7498/aps.56.5796
    [18] 陈 霞, 王发强, 路轶群, 赵 峰, 李明明, 米景隆, 梁瑞生, 刘颂豪. 运行双协议相位调制的量子密钥分发系统. 物理学报, 2007, 56(11): 6434-6440. doi: 10.7498/aps.56.6434
    [19] 赵 峰, 路轶群, 王发强, 陈 霞, 李明明, 郭邦红, 廖常俊, 刘颂豪. 基于微弱相干脉冲稳定差分相位量子密钥分发. 物理学报, 2007, 56(4): 2175-2179. doi: 10.7498/aps.56.2175
    [20] 李明明, 王发强, 路轶群, 赵 峰, 陈 霞, 梁瑞生, 刘颂豪. 高稳定的差分相位编码量子密钥分发系统. 物理学报, 2006, 55(9): 4642-4646. doi: 10.7498/aps.55.4642
计量
  • 文章访问数:  2641
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-23
  • 修回日期:  2023-05-17
  • 上网日期:  2023-05-22
  • 刊出日期:  2023-07-20

/

返回文章
返回