搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

实用化态制备误差容忍参考系无关量子密钥分发协议

周阳 马啸 周星宇 张春辉 王琴

引用本文:
Citation:

实用化态制备误差容忍参考系无关量子密钥分发协议

周阳, 马啸, 周星宇, 张春辉, 王琴

Study of practical state-preparation error tolerant reference-frame-independent quantum key distribution protocol

Zhou Yang, Ma Xiao, Zhou Xing-Yu, Zhang Chun-Hui, Wang Qin
PDF
HTML
导出引用
  • 在实际量子密钥分发系统中, 实际器件不理想可能导致系统存在安全性隐患. 比如, 光源端的编码设备不理想, 可能导致量子态存在误差; 探测端的探测器存在缺陷, 可能产生后脉冲或死时间效应, 从而影响系统的实际安全性. 因此, 本文提出了一种同时考虑光源端和探测器缺陷的实用化态制备误差容忍参考系无关量子密钥分发协议. 本文采用三强度诱骗态方案开展建模分析与数值仿真计算. 本协议通过利用虚拟态方法估算相位误码率, 降低了态制备误差对密钥率的影响; 同时对探测器端的缺陷进行相应参数刻画, 具有较强的鲁棒性, 为参考系无关量子密钥分发协议的实际应用提供了重要参考价值.
    Quantum key distribution (QKD) enables the establishment of shared keys between two distant users, Alice and Bob, based on the fundamental principles of quantum mechanics, and it has proven to possess information-theoretic security. In most of QKD systems, Alice and Bob require a shared reference frame, and real-time calibration of the reference frame increases system costs and reduces its performance. Fortunately, the reference-frame-independent QKD protocol has been proposed, overcoming reference-frame drift issues and receiving widespread attention. However, in practical QKD systems, the non-ideal characteristics of realistic devices introduce certain inconsistency between the theory and the practice. In real-world quantum key distribution systems, device imperfections can lead to security vulnerabilities, thereby reducing system security. For example, imperfections in the encoding apparatus at the source end may result in errors in the quantum states. The inherent defects in the detection part may cause after-pulse effects and dead-time effects, thus reducing the key rate. Therefore, in this work, we propose a practical state-preparation error tolerant reference-frame-independent quantum key distribution protocol by taking imperfections in both the source and the detectors into account. Moreover, a three-intensity decoy-state scheme for modeling analysis and numerical simulations is employed. In this protocol, we reduce the influence of state-preparation errors on the key rate by utilizing virtual state methods to precisely estimate the phase-error rate. Furthermore, by characterizing the effects of after-pulses and dead-time on the key rate, our protocol exhibits higher robustness and can effectively address issues related to detector imperfections. This approach can also be extended to other quantum key distribution protocols with higher security levels, such as measurement-device-independent quantum key distribution protocol and twin-field quantum key distribution, further mitigating the influence of device imperfections on practical implementation of QKD system. Therefore, our present work provide important reference value for putting the quantum key distributions into practical application.
      通信作者: 王琴, qinw@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074194, 11774180) 、江苏省自然科学基金前沿技术项目(批准号: BK20192001)、江苏省重点研发计划产业前瞻与关键核心技术项目(批准号: BE2022071)和江苏省研究生科研创新计划(批准号: SJCX22_0276, KYCX23_ 1039).
      Corresponding author: Wang Qin, qinw@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074194, 11774180), the Leading-edge Technology Program of Natural Science Foundation of Jiangsu Province, China (Grant No. BK20192001), the Industrial Prospect and Key Core Technology Projects of Key R & D Program of Jiangsu Province, China (Grant No. BE2022071), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant Nos. KYCX20_0726, KYCX23_1039).
    [1]

    Bennett C H, Brassard G 1984 Proceedings of IEEE International Conference on Computers, System and Signal Processing (Vol. 1 of 3) (Bangalore: IEEE) pp175–179

    [2]

    Brassard G, Lütkenhaus N, Mor T, Sanders B C 2000 Phys. Rev. Lett. 85 1330Google Scholar

    [3]

    Yuan Z, Plews A, Takahashi R, Doi K, Tam W, Sharpe A W, Dixon A R, Lavelle E, Dynes J F, Murakami A, Kujiraoka M, Lucamarini M, Tanizawa Y, Sato H, Shields A J 2018 J. Light. Technol. 36 16

    [4]

    Boaron A, Korzh B, Houlmann R, Boso G, Rusca D, Gray S, Li M, Nolan D, Martin A, Zbinden H 2018 Appl. Phys. Lett. 112 17Google Scholar

    [5]

    Minder M, Pittaluga M, Roberts G, Lucamarini M, Dynes J F, Yuan Z L, Shields A J 2019 Nat. Photonics 13 5Google Scholar

    [6]

    Liu Y, Yu Z W, Zhang W, Guan J Y, Chen J P, Zhang C, Hu X L, Li H, Jiang C, Lin J, Chen T Y, You L, Wang Z, Wang X B, Zhang Q, Pan J W 2019 Phys. Rev. Lett. 123 100505Google Scholar

    [7]

    Bennett C H, Bessette F, Brassard G, Salvail L, Smolin J 1992 J Cryptol 5 3Google Scholar

    [8]

    Kurtsiefer C, Zarda P, Halder M, Weinfurter H, Gorman P M, Tapster P R, Rarity J G 2002 Nature 419 450Google Scholar

    [9]

    Laing A, Scarani V, Rarity J G, O’Brien J L 2018 Phys. Rev. A 82 012304Google Scholar

    [10]

    Gottesman D, Lo H K, Lütkenhaus N, Preskill J 2004 Quantum Inf. Comput. 4 325Google Scholar

    [11]

    Tamaki K, Curty M, Kato G, Lo H K, Azuma K 2014 Phys. Rev. A 90 052314Google Scholar

    [12]

    Wang C, Sun S H, Ma X C, Tang G Z, Liang L M 2015 Phys. Rev. A 92 042319Google Scholar

    [13]

    Xu F H, Wei K J, Sajeed S, Kaiser S, Sun S H, Tang Z Y, Qian L, Makarov V, Lo H K 2015 Phys. Rev. A 92 032305Google Scholar

    [14]

    Tang Z Y, Wei K J, Bedroya O, Qian L, Lo H K 2016 Phys. Rev. A 93 042308Google Scholar

    [15]

    Zhou X Y, Ding H J, Zhang C H, Li J, Zhang C M, Wang Q 2020 Opt. Lett. 45 4176Google Scholar

    [16]

    Fan Y G J, Wang C, Wang S, Yin Z Q, Liu H, Chen W, He D Y, Han Z F, Guo G C 2018 Phys. Rev. Appl. 10 064032Google Scholar

    [17]

    Campbell L 1992 Rev. Sci. Instrum. 63 5794Google Scholar

    [18]

    Rusca D, Boaron A, Grünenfelder F, Martin A, Zbinden H 2018 Appl. Phys. Lett. 112 171104Google Scholar

    [19]

    莫小范 2006 博士毕业论文 (合肥: 中国科学技术大学)

    Mo X F 2006 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [20]

    Wang W J, Zhou X Y, Zhang C H, Ding H J, Wang Q 2022 Quantum Inf. Process 21 1Google Scholar

    [21]

    范元冠杰 2020 博士毕业论文 (合肥: 中国科学技术大学)

    Fan Y G J 2020 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [22]

    Wang X B 2005 Phys. Rev. Lett. 94 30503Google Scholar

    [23]

    马啸, 孙铭铄, 刘靖阳, 丁华建, 王琴 2022 物理学报 71 030301Google Scholar

    Ma X, Sun M S, Liu J Y, Ding H J, Wang Q 2022 Acta Phys. Sin. 71 030301Google Scholar

    [24]

    Fung C F, Tamaki K, Qi B, Lo H K, Ma X F 2009 Quantum Inf. Comput. 9 1533Google Scholar

    [25]

    Sun S H, Xu F H 2021 New J. Phys. 23 023011Google Scholar

    [26]

    Zhou Y H, Yu Z W, Wang X B 2016 Phys. Rev. A 93 042324Google Scholar

    [27]

    Zhang C H, Zhang C M, Guo G C, Wang Q 2018 Opt. Express 26 4219Google Scholar

    [28]

    Zhou X Y, Zhang C H, Zhang C M, Wang Q 2017 Phys. Rev. A 96 052337Google Scholar

    [29]

    Jiang C, Yu Z W, Hu X L, Wang X B 2021 Phys. Rev. A 103 012402Google Scholar

    [30]

    Huang L Y, Zhang Y C, Yu S 2021 Chin. Phys. Lett. 38 040301Google Scholar

    [31]

    Lucamarini M, Yuan Z L, Dynes J F, Shields A J 2018 Nature 557 400Google Scholar

    [32]

    Wang X B, Yu Z W, Hu X L 2018 Phys. Rev. A 98 062323Google Scholar

  • 图 1  (a) 基于态制备缺陷$ \delta $的RFI协议以及LT-RFI协议的密钥生成率图; (b)基于后脉冲效应$ {P_{{\text{ap}}}} $的RFI协议以及LT-RFI协议的密钥生成率图

    Fig. 1.  (a) Key generation rates of the RFI protocol and LT-RFI protocol based on state preparation flaws $ \delta $; (b) the key generation rates of the RFI protocol and LT-RFI protocol based afterpulse effect $ {P_{{\text{ap}}}} $.

    图 2  基于态制备缺陷和后脉冲效应的RFI 协议以及LT-RFI协议的密钥生成率图

    Fig. 2.  Key generation rates of the RFI protocol and LT-RFI protocol based on state preparation flaws and after-pulse effect.

    图 3  基于态制备缺陷和后脉冲效应的RFI 协议与LT-RFI 协议的Eve获取的信息量

    Fig. 3.  Information leakage to Eve of the RFI protocols and LT-RFI protocols based on state preparation flaws and after-pulse effect.

    图 4  基于不同设备缺陷的RFI协议以及LT-RFI协议密钥生成率图

    Fig. 4.  Key generation rates of the RFI protocol and LT-RFI protocol based on different defects in equipments.

    表 1  基于后脉冲效应和死时间效应的LT-RFI协议仿真参数列表

    Table 1.  Parameter list used in simulation of LT-RFI protocol based on after-pulse effect and dead time effect.

    Bob探测器
    暗计数率$ {P_{{\text{dc}}}} $
    Bob探测器
    效率$ {\eta _{{\text{Bob}}}} $
    系统纠错
    系数f
    Alice发送的
    总脉冲数N
    系统
    重复频率F
    信道损耗系数
    $ \alpha $/(dB·km–1)
    系统
    本底误码$ {e_{\text{d}}} $
    3×10–6 0.145 1.16 1012 109 0.2 0.0015
    下载: 导出CSV
  • [1]

    Bennett C H, Brassard G 1984 Proceedings of IEEE International Conference on Computers, System and Signal Processing (Vol. 1 of 3) (Bangalore: IEEE) pp175–179

    [2]

    Brassard G, Lütkenhaus N, Mor T, Sanders B C 2000 Phys. Rev. Lett. 85 1330Google Scholar

    [3]

    Yuan Z, Plews A, Takahashi R, Doi K, Tam W, Sharpe A W, Dixon A R, Lavelle E, Dynes J F, Murakami A, Kujiraoka M, Lucamarini M, Tanizawa Y, Sato H, Shields A J 2018 J. Light. Technol. 36 16

    [4]

    Boaron A, Korzh B, Houlmann R, Boso G, Rusca D, Gray S, Li M, Nolan D, Martin A, Zbinden H 2018 Appl. Phys. Lett. 112 17Google Scholar

    [5]

    Minder M, Pittaluga M, Roberts G, Lucamarini M, Dynes J F, Yuan Z L, Shields A J 2019 Nat. Photonics 13 5Google Scholar

    [6]

    Liu Y, Yu Z W, Zhang W, Guan J Y, Chen J P, Zhang C, Hu X L, Li H, Jiang C, Lin J, Chen T Y, You L, Wang Z, Wang X B, Zhang Q, Pan J W 2019 Phys. Rev. Lett. 123 100505Google Scholar

    [7]

    Bennett C H, Bessette F, Brassard G, Salvail L, Smolin J 1992 J Cryptol 5 3Google Scholar

    [8]

    Kurtsiefer C, Zarda P, Halder M, Weinfurter H, Gorman P M, Tapster P R, Rarity J G 2002 Nature 419 450Google Scholar

    [9]

    Laing A, Scarani V, Rarity J G, O’Brien J L 2018 Phys. Rev. A 82 012304Google Scholar

    [10]

    Gottesman D, Lo H K, Lütkenhaus N, Preskill J 2004 Quantum Inf. Comput. 4 325Google Scholar

    [11]

    Tamaki K, Curty M, Kato G, Lo H K, Azuma K 2014 Phys. Rev. A 90 052314Google Scholar

    [12]

    Wang C, Sun S H, Ma X C, Tang G Z, Liang L M 2015 Phys. Rev. A 92 042319Google Scholar

    [13]

    Xu F H, Wei K J, Sajeed S, Kaiser S, Sun S H, Tang Z Y, Qian L, Makarov V, Lo H K 2015 Phys. Rev. A 92 032305Google Scholar

    [14]

    Tang Z Y, Wei K J, Bedroya O, Qian L, Lo H K 2016 Phys. Rev. A 93 042308Google Scholar

    [15]

    Zhou X Y, Ding H J, Zhang C H, Li J, Zhang C M, Wang Q 2020 Opt. Lett. 45 4176Google Scholar

    [16]

    Fan Y G J, Wang C, Wang S, Yin Z Q, Liu H, Chen W, He D Y, Han Z F, Guo G C 2018 Phys. Rev. Appl. 10 064032Google Scholar

    [17]

    Campbell L 1992 Rev. Sci. Instrum. 63 5794Google Scholar

    [18]

    Rusca D, Boaron A, Grünenfelder F, Martin A, Zbinden H 2018 Appl. Phys. Lett. 112 171104Google Scholar

    [19]

    莫小范 2006 博士毕业论文 (合肥: 中国科学技术大学)

    Mo X F 2006 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [20]

    Wang W J, Zhou X Y, Zhang C H, Ding H J, Wang Q 2022 Quantum Inf. Process 21 1Google Scholar

    [21]

    范元冠杰 2020 博士毕业论文 (合肥: 中国科学技术大学)

    Fan Y G J 2020 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [22]

    Wang X B 2005 Phys. Rev. Lett. 94 30503Google Scholar

    [23]

    马啸, 孙铭铄, 刘靖阳, 丁华建, 王琴 2022 物理学报 71 030301Google Scholar

    Ma X, Sun M S, Liu J Y, Ding H J, Wang Q 2022 Acta Phys. Sin. 71 030301Google Scholar

    [24]

    Fung C F, Tamaki K, Qi B, Lo H K, Ma X F 2009 Quantum Inf. Comput. 9 1533Google Scholar

    [25]

    Sun S H, Xu F H 2021 New J. Phys. 23 023011Google Scholar

    [26]

    Zhou Y H, Yu Z W, Wang X B 2016 Phys. Rev. A 93 042324Google Scholar

    [27]

    Zhang C H, Zhang C M, Guo G C, Wang Q 2018 Opt. Express 26 4219Google Scholar

    [28]

    Zhou X Y, Zhang C H, Zhang C M, Wang Q 2017 Phys. Rev. A 96 052337Google Scholar

    [29]

    Jiang C, Yu Z W, Hu X L, Wang X B 2021 Phys. Rev. A 103 012402Google Scholar

    [30]

    Huang L Y, Zhang Y C, Yu S 2021 Chin. Phys. Lett. 38 040301Google Scholar

    [31]

    Lucamarini M, Yuan Z L, Dynes J F, Shields A J 2018 Nature 557 400Google Scholar

    [32]

    Wang X B, Yu Z W, Hu X L 2018 Phys. Rev. A 98 062323Google Scholar

  • [1] 陈越, 刘长杰, 郑伊佳, 曹原, 郭明轩, 朱佳莉, 周星宇, 郁小松, 赵永利, 王琴. 多域跨协议量子网络的域间密钥业务按需提供策略. 物理学报, 2024, 73(17): 170301. doi: 10.7498/aps.73.20240819
    [2] 罗一振, 马洛嘉, 孙铭烁, 吴思睿, 邱丽华, 王禾, 王琴. 基于监控标记单光子源的量子密钥分发协议. 物理学报, 2024, 73(24): 240302. doi: 10.7498/aps.73.20241269
    [3] 马洛嘉, 丁华建, 陈子骐, 张春辉, 王琴. 一种态制备误差容忍的量子数字签名协议. 物理学报, 2024, 73(2): 020301. doi: 10.7498/aps.73.20231190
    [4] 周江平, 周媛媛, 周学军. 改进的测量设备无关协议参数优化方法. 物理学报, 2023, 72(12): 120303. doi: 10.7498/aps.72.20230179
    [5] 刘天乐, 徐枭, 付博玮, 徐佳歆, 刘靖阳, 周星宇, 王琴. 基于回归决策树的测量设备无关型量子密钥分发参数优化. 物理学报, 2023, 72(11): 110304. doi: 10.7498/aps.72.20230160
    [6] 马啸, 孙铭烁, 刘靖阳, 丁华建, 王琴. 一种基于标记单光子源的态制备误差容忍量子密钥分发协议. 物理学报, 2022, 71(3): 030301. doi: 10.7498/aps.71.20211456
    [7] 杜聪, 王金东, 秦晓娟, 魏正军, 於亚飞, 张智明. 基于混合编码的测量设备无关量子密钥分发的简单协议. 物理学报, 2020, 69(19): 190301. doi: 10.7498/aps.69.20200162
    [8] 谷文苑, 赵尚弘, 东晨, 王星宇, 杨鼎. 参考系波动下的参考系无关测量设备无关量子密钥分发协议. 物理学报, 2019, 68(24): 240301. doi: 10.7498/aps.68.20191364
    [9] 吴承峰, 杜亚男, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明. 弱相干光源测量设备无关量子密钥分发系统的性能优化分析. 物理学报, 2016, 65(10): 100302. doi: 10.7498/aps.65.100302
    [10] 杜亚男, 解文钟, 金璇, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明. 基于弱相干光源测量设备无关量子密钥分发系统的误码率分析. 物理学报, 2015, 64(11): 110301. doi: 10.7498/aps.64.110301
    [11] 胡华鹏, 王金东, 黄宇娴, 刘颂豪, 路巍. 基于条件参量下转换光子对的非正交编码诱惑态量子密钥分发. 物理学报, 2010, 59(1): 287-292. doi: 10.7498/aps.59.287
    [12] 王金东, 魏正军, 张辉, 张华妮, 陈帅, 秦晓娟, 郭健平, 廖常俊, 刘颂豪. 长程光纤传输的时间抖动对相位编码量子密钥分发系统的影响. 物理学报, 2010, 59(8): 5514-5522. doi: 10.7498/aps.59.5514
    [13] 何广强, 郭红斌, 李昱丹, 朱思维, 曾贵华. 基于二进制均匀调制相干态的量子密钥分发方案. 物理学报, 2008, 57(4): 2212-2217. doi: 10.7498/aps.57.2212
    [14] 米景隆, 王发强, 林青群, 梁瑞生, 刘颂豪. 诱惑态在“双探测器”准单光子光源量子密钥分发系统中的应用. 物理学报, 2008, 57(2): 678-684. doi: 10.7498/aps.57.678
    [15] 权东晓, 裴昌幸, 朱畅华, 刘 丹. 一种新的预报单光子源诱骗态量子密钥分发方案. 物理学报, 2008, 57(9): 5600-5604. doi: 10.7498/aps.57.5600
    [16] 张 静, 王发强, 赵 峰, 路轶群, 刘颂豪. 时间和相位混合编码的量子密钥分发方案. 物理学报, 2008, 57(8): 4941-4946. doi: 10.7498/aps.57.4941
    [17] 胡华鹏, 张 静, 王金东, 黄宇娴, 路轶群, 刘颂豪, 路 巍. 双协议量子密钥分发系统实验研究. 物理学报, 2008, 57(9): 5605-5611. doi: 10.7498/aps.57.5605
    [18] 赵 峰, 路轶群, 王发强, 陈 霞, 李明明, 郭邦红, 廖常俊, 刘颂豪. 基于微弱相干脉冲稳定差分相位量子密钥分发. 物理学报, 2007, 56(4): 2175-2179. doi: 10.7498/aps.56.2175
    [19] 何广强, 易 智, 朱 俊, 曾贵华. 基于双模压缩态的量子密钥分发方案. 物理学报, 2007, 56(11): 6427-6433. doi: 10.7498/aps.56.6427
    [20] 陈 霞, 王发强, 路轶群, 赵 峰, 李明明, 米景隆, 梁瑞生, 刘颂豪. 运行双协议相位调制的量子密钥分发系统. 物理学报, 2007, 56(11): 6434-6440. doi: 10.7498/aps.56.6434
计量
  • 文章访问数:  2405
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-15
  • 修回日期:  2023-09-07
  • 上网日期:  2023-09-21
  • 刊出日期:  2023-12-20

/

返回文章
返回