搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维磁性半导体笼目晶格Nb3Cl8单层的磁性及自旋电子输运性质

樊晓筝 李怡莲 吴怡 陈俊彩 徐国亮 安义鹏

引用本文:
Citation:

二维磁性半导体笼目晶格Nb3Cl8单层的磁性及自旋电子输运性质

樊晓筝, 李怡莲, 吴怡, 陈俊彩, 徐国亮, 安义鹏

Magnetism and spin transport properties of two-dimensional magnetic semiconductor kagome lattice Nb3Cl8 monolayer

Fan Xiao-Zheng, Li Yi-Lian, Wu Yi, Chen Jun-Cai, Xu Guo-Liang, An Yi-Peng
PDF
HTML
导出引用
  • 具有本征磁性的二维半导体材料在实现低功耗、小尺寸和高效率的自旋电子学器件方面具有重要应用前景. 一些拥有特殊晶格结构的二维材料, 如笼目晶格结构, 凭借其在磁性和电学方面的新颖性质而受到研究者的青睐. 最近, 一种新的具有笼目晶格结构的二维磁性半导体材料Nb3Cl8单层被成功制备出来, 为探索具有笼目结构的二维磁性半导体器件提供了新机会. 本文通过第一性原理方法研究了Nb3Cl8单层的电子结构、磁各向异性, 构造了其p-n结二极管结构, 并研究了其自旋输运性质. 结果表明, Nb3Cl8单层易磁化轴在平面内, 沿x轴方向, Nb原子对磁各向异性起主要贡献, 且相关磁性可通过应力应变进行调控. 此外, 基于Nb3Cl8单层的p-n结二极管纳米器件表现出整流效应、自旋过滤效应以及负微分电阻现象. 这些结果表明了Nb3Cl8单层在下一代高性能自旋电子器件方面具有较大的应用潜力.
    Two-dimensional semiconductor materials with intrinsic magnetism have great application prospects in realizing spintronic devices with low power consumption, small size and high efficiency. Some two-dimensional materials with special lattice structures, such as kagome lattice crystals, are favored by researchers because of their novel properties in magnetism and electronic properties. Recently, a new two-dimensional magnetic semiconductor material Nb3Cl8 monolayer with kagome lattice structure was successfully prepared, which provides a new platform for exploring two-dimensional magnetic semiconductor devices with kagome structure. In this work, we study the electronic structure and magnetic anisotropy of Nb3Cl8 monolayer. We also further construct its p-n junction diode and study its spin transport properties by using density functional theory combined with non-equilibrium Green’s function method. The results show that the phonon spectrum of the Nb3Cl8 monolayer has no negative frequency, confirming its dynamic stability. The band gap of the spin-down state (1.157 eV) is significantly larger than that of the spin-up state (0.639 eV). The magnetic moment of the Nb3Cl8 monolayer is 0.997 μB, and its easy magnetization axis is in the plane and along the x-axis direction based on its energy of magnetic anisotropy. The Nb atoms make the main contribution to the magnetic anisotropy. When the strain is applied, the band gap of the spin-down states will decrease, while the band gap of the spin-up state monotonically decreases from the negative (compress) to positive (tensile) strain. As the strain variable goes from –6% to 6%, the contribution of Nb atoms to the total magnetic moment gradually increases. Moreover, strain causes the easy magnetization axis of the Nb3Cl8 monolayer to flip vertically from in-plane to out-plane. The designed p-n junction diode nanodevice based on Nb3Cl8 monolayer exhibits an obvious rectification effect. In addition, the current in the spin-up state is larger than that in the spin-down state, exhibiting a spin-polarized transport behavior. Moreover, a negative differential resistance (NDR) phenomenon is also observed, which could be used in the NDR devices. These results demonstrate that the Nb3Cl8 monolayer material has great potential applications in the next-generation high-performance spintronic devices, and further experimental verification and exploration of this material and related two-dimensional materials are needed.
      通信作者: 安义鹏, ypan@htu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12274117)、河南省高校科技创新团队(批准号: 24IRTSTHN025)、河南省优秀青年科学基金(批准号: 202300410226)、中原英才计划-中原青年拔尖人才项目(2021年)、河南省高校重点科研项目(批准号: 22A140020)和河南省外籍专家工作室项目(批准号: GZS2023007)资助的课题.
      Corresponding author: An Yi-Peng, ypan@htu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12274117), the Program for Innovative Research Team (in Science and Technology) in University of Henan Province, China (Grant No. 24IRTSTHN025), the Science Foundation for the Excellent Youth Scholars of Henan Province, China (Grant No. 202300410226), the Young Top-notch Talents Project of Henan Province, China (2021 year), the Key Scientific Project of Universities of Henan Province, China (Grant No. 22A140020), and the Henan Center for Outstanding Overseas Scientists, China (Grant No. GZS2023007).
    [1]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    An M, Dong S 2020 APL Mater. 8 110704Google Scholar

    [4]

    Ataca C, Sahin H, Ciraci S 2012 J. Phys. Chem. C 116 8983Google Scholar

    [5]

    Du Y C, Yang L M, Liu H, Ye P D 2014 APL Mater. 2 092510Google Scholar

    [6]

    Li G P, Yao K L, Gao G Y 2018 Nanotechnology 29 015204Google Scholar

    [7]

    Li X X, Fan Z Q, Liu P Z, Chen M L, Liu X, Jia C K, Sun D M, Jiang X W, Han Z, Bouchiat V, Guo J J, Chen J H, Zhang Z D 2017 Nat. Commun. 8 970Google Scholar

    [8]

    Yuan J, Chen Y, Xie Y, Zhang X, Rao D, Guo Y, Yan X, Feng Y P, Cai Y 2020 Proc. Natl. Acad. Sci. U.S.A. 117 6362Google Scholar

    [9]

    An Y P, Gong S J, Hou Y S, Li J, Wu R Q, Jiao Z Y, Wang T X, Jiao J T 2020 J. Phys. Condens. Matter 32 055503Google Scholar

    [10]

    An Y P, Hou Y S, Wang H, Li J, Wu R Q, Wang T X, Da H X, Jiao J T 2019 Phys. Rev. A 11 064031Google Scholar

    [11]

    An Y P, Jiao J T, Hou Y S, Wang H, Wu D P, Wang T X, Fu Z M, Xu G L, Wu R Q 2018 Phys. Chem. Chem. Phys. 20 21552Google Scholar

    [12]

    An Y P, Jiao J T, Hou Y S, Wang H, Wu R Q, Liu C, Chen X N, Wang T X, Wang K 2019 J. Phys. Condens. Matter 31 065301Google Scholar

    [13]

    Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L, Wu K 2016 Nat. Chem. 8 563Google Scholar

    [14]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513Google Scholar

    [15]

    Arcudia J, Kempt R, Cifuentes-Quintal M E, Heine T, Merino G 2020 Phys. Rev. Lett. 125 196401Google Scholar

    [16]

    Jin Z H, Mullen J T, Kim K W 2016 Appl. Phys. Lett. 109 053108Google Scholar

    [17]

    Lu J, Fan Z Q, Gong J, Chen J Z, ManduLa H, Zhang Y Y, Yang S Y, Jiang X W 2018 Phys. Chem. Chem. Phys. 20 5699Google Scholar

    [18]

    Sibari A, Kerrami Z, Kara A, Benaissa M 2020 J. Appl. Phys. 127 225703Google Scholar

    [19]

    An Y P, Wang K, Gong S J, Hou Y S, Ma C L, Zhu M F, Zhao C X, Wang T X, Ma S H, Wang H Y, Wu R Q, Liu W M 2021 npj Comput. Mater. 7 45Google Scholar

    [20]

    Feng Y L, Wang Z L, Zuo X, Gao G Y 2022 Appl. Phys. Lett. 120 092405Google Scholar

    [21]

    Gao Y F, Liao J B, Wang H Y, Wu Y, Li Y L, Wang K, Ma C L, Gong S J, Wang T X, Dong X, Jiao Z Y, An Y P 2022 Phys. Rev. A 18 034033Google Scholar

    [22]

    Yan H J, Guan Q Y, Chen H F, Cui X Y, Shu Z, Liang D, Wang B W, Cai Y Q 2022 J. Mater. Chem. A 10 23744Google Scholar

    [23]

    Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412Google Scholar

    [24]

    Fan Z Q, Jiang X W, Chen J Z, Luo J W 2018 ACS Appl. Mater. Interfaces 10 19271Google Scholar

    [25]

    Fan Z Q, Jiang X W, Luo J W, Jiao L Y, Huang R, Li S S, Wang L W 2017 Phys. Rev. B 96 165402Google Scholar

    [26]

    Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750Google Scholar

    [27]

    王贺岩, 高怡帆, 廖家宝, 陈俊彩, 李怡莲, 吴怡, 徐国亮, 安义鹏 2022 物理学报 71 097502Google Scholar

    Wang H Y, Gao Y F, Liao J B, Chen J C, Li Y L, Wu Y, Xu G L, An Y P 2022 Acta Phys. Sin. 71 097502Google Scholar

    [28]

    Chen J C, Guo Y L, Ma C L, Gong S J, Zhao C X, Wang T X, Dong X, Jiao Z Y, Ma S H, Xu G L, An Y P 2023 Phys. Rev. A 19 054013Google Scholar

    [29]

    Chen S B, Huang C X, Sun H S, Ding J F, Jena P, Kan E 2019 J. Phys. Chem. C 123 17987Google Scholar

    [30]

    Dayen J F, Ray S J, Karis O, Vera-Marun I J, Kamalakar M V 2020 Appl. Phys. Rev. 7 011303Google Scholar

    [31]

    Žutić I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323Google Scholar

    [32]

    Lin H L, Yan F G, Hu C, Zheng Y H, Sheng Y, Zhu W K, Wang Z, Zheng H Z, Wang K Y 2022 Nanoscale 14 2352Google Scholar

    [33]

    Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z, Zhang X M, Xu J H, Wang Y J, Zheng Y H, Yan F G, Zhang J, Zhao L X, Patané A, Zhang J, Chang H X, Wang K Y 2022 Chin. Phys. Lett. 39 128501Google Scholar

    [34]

    Zhu W K, Lin H L, Yan F G, Hu C, Wang Z, Zhao L X, Deng Y C, Kudrynskyi Z R, Zhou T, Kovalyuk Z D, Zheng Y H, Patanè A, Žutić I, Li S S, Zheng H Z, Wang K Y 2021 Adv. Mater. 33 2104658Google Scholar

    [35]

    Zhu W K, Zhu Y M, Zhou T, Zhang X P, Lin H L, Cui Q R, Yan F G, Wang Z, Deng Y C, Yang H X, Zhao L X, Žutić I, Belashchenko K D, Wang K Y 2023 Nat. Commun. 14 5371Google Scholar

    [36]

    Wang Z A, Xue W S, Yan F G, Zhu W K, Liu Y, Zhang X H, Wei Z M, Chang K, Yuan Z, Wang K Y 2023 Nano Lett. 23 710Google Scholar

    [37]

    Ugeda M M, Brihuega I, Guinea F, Gómez-Rodríguez J M 2010 Phys. Rev. Lett. 104 096804Google Scholar

    [38]

    Mishra R, Zhou W, Pennycook S J, Pantelides S T, Idrobo J C 2013 Phys. Rev. B 88 144409Google Scholar

    [39]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [40]

    Zhang Z W, Shang J Z, Jiang C Y, Rasmita A, Gao W B, Yu T 2019 Nano Lett. 19 3138Google Scholar

    [41]

    Cai X H, Song T C, Wilson N P, Clark G, He M H, Zhang X O, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Cobden D H, Xu X D 2019 Nano Lett. 19 3993Google Scholar

    [42]

    Rosenberg E, DeStefano J M, Guo Y, Oh J S, Hashimoto M, Lu D, Birgeneau R J, Lee Y, Ke L, Yi M, Chu J-H 2022 Phys. Rev. B 106 115139Google Scholar

    [43]

    Zelenskiy A, Monchesky T L, Plumer M L, Southern B W 2022 Phys. Rev. B 106 144433Google Scholar

    [44]

    Yi X W, Ma X Y, Zhang Z, Liao Z W, You J Y, Su G 2022 Phys. Rev. B 106 L220505Google Scholar

    [45]

    Ghimire N J, Dally R L, Poudel L, Jones D C, Michel D, Magar N T, Bleuel M, McGuire M A, Jiang J S, Mitchell J F, Lynn J W, Mazin I I 2020 Sci. Adv. 6 eabe2680Google Scholar

    [46]

    Kang M G, Ye L D, Fang S A, You J S, Levitan A, Han M Y, Facio J I, Jozwiak C, Bostwick A, Rotenberg E, Chan M K, McDonald R D, Graf D, Kaznatcheev K, Vescovo E, Bell D C, Kaxiras E, van den Brink J, Richter M, Prasad Ghimire M, Checkelsky J G, Comin R 2020 Nat. Mater. 19 163Google Scholar

    [47]

    Li M, Wang Q, Wang G, Yuan Z, Song W, Lou R, Liu Z, Huang Y, Liu Z, Lei H, Yin Z, Wang S 2021 Nat. Commun. 12 3129Google Scholar

    [48]

    Ye L D, Kang M G, Liu J W, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R, Checkelsky J G 2018 Nature 555 638Google Scholar

    [49]

    Yin J X, Zhang S S, Li H, Jiang K, Chang G Q, Zhang B J, Lian B, Xiang C, Belopolski I, Zheng H, Cochran T A, Xu S Y, Bian G, Liu K, Chang T R, Lin H, Lu Z Y, Wang Z Q, Jia S, Wang W H, Hasan M Z 2018 Nature 562 91Google Scholar

    [50]

    Xu X T, Yin J X, Ma W, Tien H J, Qiang X B, Reddy P V S, Zhou H, Shen J, Lu H Z, Chang T R, Qu Z, Jia S 2022 Nat. Commun. 13 1197Google Scholar

    [51]

    Sun Z Y, Zhou H, Wang C X, Kumar S, Geng D Y, Yue S S, Han X, Haraguchi Y, Shimada K, Cheng P, Chen L, Shi Y G, Wu K H, Meng S, Feng B J 2022 Nano Lett. 22 4596Google Scholar

    [52]

    Jiang J, Liang Q, Meng R, Yang Q, Tan C, Sun X, Chen X 2017 Nanoscale 9 2992Google Scholar

    [53]

    Smidstrup S, Stradi D, Wellendorff J, Khomyakov P A, Vej-Hansen U G, Lee M E, Ghosh T, Jónsson E, Jónsson H, Stokbro K 2017 Phys. Rev. B 96 195309Google Scholar

    [54]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [55]

    Marmolejo-Tejada J M, Dolui K, Lazic P, Chang P H, Smidstrup S, Stradi D, Stokbro K, Nikolić B K 2017 Nano Lett. 179 5626Google Scholar

    [56]

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2020 J. Phys. Condens. Matter 32 015901Google Scholar

    [57]

    van Setten M J, Giantomassi M, Bousquet E, Verstraete M J, Hamann D R, Gonze X, Rignanese G M 2017 Comput. Phys. Commun. 226 39Google Scholar

    [58]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [59]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [60]

    Mortazavi B, Zhuang X, Rabczuk T 2022 Appl. Phys. A 128 934Google Scholar

    [61]

    Meng R S, Pereira L D, Locquet J P, Afanas'ev V, Pourtois G, Houssa M 2022 npj Comput. Mater. 8 230Google Scholar

    [62]

    Lado J L, Fernández-Rossier J 2017 2D Mater. 4 035002Google Scholar

    [63]

    Daalderop G H O, Kelly P J, Schuurmans M F H 1990 Phys. Rev. B 41 11919Google Scholar

    [64]

    姜楠, 李奥林, 蘧水仙, 勾思, 欧阳方平 2022 物理学报 71 206303Google Scholar

    Jiang N, Li A L, Qu S X, Gou S, Ouyang F P 2022 Acta Phys. Sin. 71 206303Google Scholar

    [65]

    Lv H Y, Lu W J, Shao D F, Liu Y, Sun Y P 2015 Phys. Rev. B 92 214419Google Scholar

    [66]

    Webster L, Yan J A 2018 Phys. Rev. B 98 144411Google Scholar

    [67]

    Stradi D, Martinez U, Blom A, Brandbyge M, Stokbro K 2016 Phys. Rev. B 93 155302Google Scholar

    [68]

    Gunst T, Markussen T, Stokbro K, Brandbyge M 2016 Phys. Rev. B 93 035414Google Scholar

    [69]

    Lee I H, Martin R M 1997 Phys. Rev. B 56 7197Google Scholar

    [70]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

  • 图 1  (a) Nb3Cl8单层晶体结构的俯视图(上)和侧视图(下), x轴代表锯齿型方向; (b) 声子谱以及投影声子态密度; 自旋向上(c)和向下(d)状态的元素投影电子能带以及投影态密度; Γ点附近自旋向上(e)和向下(f)状态的导带与价带的三维视图以及在第一布里渊区的二维投影; 色卡显示了图(e)、图(f)中从低(红色)到高(紫色)的能量本征值; 费米能级(EF)设置在能量零点位置

    Fig. 1.  (a) Top view (top) and side view (bottom) of Nb3Cl8 monolayer crystal structure, x axis refers to the zigzag irection; (b) phonon spectrum and phonon projected density of states; element-projected electronic band and density of states for the spin-up (c) and spin-down (d) states; 3D views for the spin-up (e) and spin-down (f) states of the conduction and valence bands around the Γ point, and 2D views in the first Brillouin zone projection. Color map shows the values for (e), (f) from low (red) to high (purple). the Fermi level (EF) is set at the energy zero position.

    图 2  (a) x-y平面内EMA随极角θϕ的变化; (b) y-z平面内EMA随极角θϕ的变化, 插图显示极坐标; (c) θ = 90°, ϕ = 90°(y轴方向)的EMA轨道投影; (d) θ = 90°, ϕ = 0°(x轴方向)的EMA轨道投影; y轴(θ = 90°, ϕ = 90°)和z轴(θ = 0°, ϕ = 90°)方向的能量设置为x-yy-z平面的零参考

    Fig. 2.  (a) EMA variation with polar angles θ and ϕ in the x-y plane; (b) EMA variation with polar angles θ and ϕ in the y-z plane, inset shows polar coordinates; orbital projections of EMA corresponding to polar angles of (c) θ = 90°, ϕ = 90° (y axis direction) and (d) θ = 90°, ϕ = 0° (x axis direction). Energy of y axis (θ = 90°, ϕ = 90°) and z axis (θ = 0°, ϕ = 90°) directions are set as zero reference of the x-y and y-z plane.

    图 3  (a) Nb3Cl8单层自旋向上态与自旋向下态带隙随应力应变的变化; (b) Nb3Cl8单层能量变化量($ \Delta E $)和Nb原子对总磁矩的贡献($ {{{M_{{\mathrm{Nb}}}}} / {{M_{{\mathrm{Total}}}}}} $)随应力应变的变化

    Fig. 3.  (a) Variation of the band gap with strain in the spin-up and spin-down states of Nb3Cl8 monolayer; (b) variation of the energy change ($ \Delta E $) and the contribution of Nb atoms to the total magnetic moment ($ {{{M_{{\mathrm{Nb}}}}} / {{M_{{\mathrm{Total}}}}}} $) with strain in the Nb3Cl8 monolayer.

    图 4  (a) Z型Nb3Cl8单层p-n结二极管示意图; (b) Z型Nb3Cl8单层p-n结二极管I-V曲线; (c) Z型Nb3Cl8单层p-n结二极管的微分电导(dI/dV)曲线; (d) Z型Nb3Cl8单层p-n结二极管整流比(RR)和极化比(PR)

    Fig. 4.  (a) Schematic diagram of Z-type Nb3Cl8 monolayer p-n junction diode; (b) I-V curve of Z-type Nb3Cl8 monolayer p-n junction diode; (c) differential conductance (dI/dV) curve of Z-type Nb3Cl8 monolayer p-n junction diode; (d) rectification ratio (RR) and polarization ratio (PR) of Z-type Nb3Cl8 monolayer p-n junction diode.

  • [1]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    An M, Dong S 2020 APL Mater. 8 110704Google Scholar

    [4]

    Ataca C, Sahin H, Ciraci S 2012 J. Phys. Chem. C 116 8983Google Scholar

    [5]

    Du Y C, Yang L M, Liu H, Ye P D 2014 APL Mater. 2 092510Google Scholar

    [6]

    Li G P, Yao K L, Gao G Y 2018 Nanotechnology 29 015204Google Scholar

    [7]

    Li X X, Fan Z Q, Liu P Z, Chen M L, Liu X, Jia C K, Sun D M, Jiang X W, Han Z, Bouchiat V, Guo J J, Chen J H, Zhang Z D 2017 Nat. Commun. 8 970Google Scholar

    [8]

    Yuan J, Chen Y, Xie Y, Zhang X, Rao D, Guo Y, Yan X, Feng Y P, Cai Y 2020 Proc. Natl. Acad. Sci. U.S.A. 117 6362Google Scholar

    [9]

    An Y P, Gong S J, Hou Y S, Li J, Wu R Q, Jiao Z Y, Wang T X, Jiao J T 2020 J. Phys. Condens. Matter 32 055503Google Scholar

    [10]

    An Y P, Hou Y S, Wang H, Li J, Wu R Q, Wang T X, Da H X, Jiao J T 2019 Phys. Rev. A 11 064031Google Scholar

    [11]

    An Y P, Jiao J T, Hou Y S, Wang H, Wu D P, Wang T X, Fu Z M, Xu G L, Wu R Q 2018 Phys. Chem. Chem. Phys. 20 21552Google Scholar

    [12]

    An Y P, Jiao J T, Hou Y S, Wang H, Wu R Q, Liu C, Chen X N, Wang T X, Wang K 2019 J. Phys. Condens. Matter 31 065301Google Scholar

    [13]

    Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L, Wu K 2016 Nat. Chem. 8 563Google Scholar

    [14]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513Google Scholar

    [15]

    Arcudia J, Kempt R, Cifuentes-Quintal M E, Heine T, Merino G 2020 Phys. Rev. Lett. 125 196401Google Scholar

    [16]

    Jin Z H, Mullen J T, Kim K W 2016 Appl. Phys. Lett. 109 053108Google Scholar

    [17]

    Lu J, Fan Z Q, Gong J, Chen J Z, ManduLa H, Zhang Y Y, Yang S Y, Jiang X W 2018 Phys. Chem. Chem. Phys. 20 5699Google Scholar

    [18]

    Sibari A, Kerrami Z, Kara A, Benaissa M 2020 J. Appl. Phys. 127 225703Google Scholar

    [19]

    An Y P, Wang K, Gong S J, Hou Y S, Ma C L, Zhu M F, Zhao C X, Wang T X, Ma S H, Wang H Y, Wu R Q, Liu W M 2021 npj Comput. Mater. 7 45Google Scholar

    [20]

    Feng Y L, Wang Z L, Zuo X, Gao G Y 2022 Appl. Phys. Lett. 120 092405Google Scholar

    [21]

    Gao Y F, Liao J B, Wang H Y, Wu Y, Li Y L, Wang K, Ma C L, Gong S J, Wang T X, Dong X, Jiao Z Y, An Y P 2022 Phys. Rev. A 18 034033Google Scholar

    [22]

    Yan H J, Guan Q Y, Chen H F, Cui X Y, Shu Z, Liang D, Wang B W, Cai Y Q 2022 J. Mater. Chem. A 10 23744Google Scholar

    [23]

    Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412Google Scholar

    [24]

    Fan Z Q, Jiang X W, Chen J Z, Luo J W 2018 ACS Appl. Mater. Interfaces 10 19271Google Scholar

    [25]

    Fan Z Q, Jiang X W, Luo J W, Jiao L Y, Huang R, Li S S, Wang L W 2017 Phys. Rev. B 96 165402Google Scholar

    [26]

    Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750Google Scholar

    [27]

    王贺岩, 高怡帆, 廖家宝, 陈俊彩, 李怡莲, 吴怡, 徐国亮, 安义鹏 2022 物理学报 71 097502Google Scholar

    Wang H Y, Gao Y F, Liao J B, Chen J C, Li Y L, Wu Y, Xu G L, An Y P 2022 Acta Phys. Sin. 71 097502Google Scholar

    [28]

    Chen J C, Guo Y L, Ma C L, Gong S J, Zhao C X, Wang T X, Dong X, Jiao Z Y, Ma S H, Xu G L, An Y P 2023 Phys. Rev. A 19 054013Google Scholar

    [29]

    Chen S B, Huang C X, Sun H S, Ding J F, Jena P, Kan E 2019 J. Phys. Chem. C 123 17987Google Scholar

    [30]

    Dayen J F, Ray S J, Karis O, Vera-Marun I J, Kamalakar M V 2020 Appl. Phys. Rev. 7 011303Google Scholar

    [31]

    Žutić I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323Google Scholar

    [32]

    Lin H L, Yan F G, Hu C, Zheng Y H, Sheng Y, Zhu W K, Wang Z, Zheng H Z, Wang K Y 2022 Nanoscale 14 2352Google Scholar

    [33]

    Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z, Zhang X M, Xu J H, Wang Y J, Zheng Y H, Yan F G, Zhang J, Zhao L X, Patané A, Zhang J, Chang H X, Wang K Y 2022 Chin. Phys. Lett. 39 128501Google Scholar

    [34]

    Zhu W K, Lin H L, Yan F G, Hu C, Wang Z, Zhao L X, Deng Y C, Kudrynskyi Z R, Zhou T, Kovalyuk Z D, Zheng Y H, Patanè A, Žutić I, Li S S, Zheng H Z, Wang K Y 2021 Adv. Mater. 33 2104658Google Scholar

    [35]

    Zhu W K, Zhu Y M, Zhou T, Zhang X P, Lin H L, Cui Q R, Yan F G, Wang Z, Deng Y C, Yang H X, Zhao L X, Žutić I, Belashchenko K D, Wang K Y 2023 Nat. Commun. 14 5371Google Scholar

    [36]

    Wang Z A, Xue W S, Yan F G, Zhu W K, Liu Y, Zhang X H, Wei Z M, Chang K, Yuan Z, Wang K Y 2023 Nano Lett. 23 710Google Scholar

    [37]

    Ugeda M M, Brihuega I, Guinea F, Gómez-Rodríguez J M 2010 Phys. Rev. Lett. 104 096804Google Scholar

    [38]

    Mishra R, Zhou W, Pennycook S J, Pantelides S T, Idrobo J C 2013 Phys. Rev. B 88 144409Google Scholar

    [39]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [40]

    Zhang Z W, Shang J Z, Jiang C Y, Rasmita A, Gao W B, Yu T 2019 Nano Lett. 19 3138Google Scholar

    [41]

    Cai X H, Song T C, Wilson N P, Clark G, He M H, Zhang X O, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Cobden D H, Xu X D 2019 Nano Lett. 19 3993Google Scholar

    [42]

    Rosenberg E, DeStefano J M, Guo Y, Oh J S, Hashimoto M, Lu D, Birgeneau R J, Lee Y, Ke L, Yi M, Chu J-H 2022 Phys. Rev. B 106 115139Google Scholar

    [43]

    Zelenskiy A, Monchesky T L, Plumer M L, Southern B W 2022 Phys. Rev. B 106 144433Google Scholar

    [44]

    Yi X W, Ma X Y, Zhang Z, Liao Z W, You J Y, Su G 2022 Phys. Rev. B 106 L220505Google Scholar

    [45]

    Ghimire N J, Dally R L, Poudel L, Jones D C, Michel D, Magar N T, Bleuel M, McGuire M A, Jiang J S, Mitchell J F, Lynn J W, Mazin I I 2020 Sci. Adv. 6 eabe2680Google Scholar

    [46]

    Kang M G, Ye L D, Fang S A, You J S, Levitan A, Han M Y, Facio J I, Jozwiak C, Bostwick A, Rotenberg E, Chan M K, McDonald R D, Graf D, Kaznatcheev K, Vescovo E, Bell D C, Kaxiras E, van den Brink J, Richter M, Prasad Ghimire M, Checkelsky J G, Comin R 2020 Nat. Mater. 19 163Google Scholar

    [47]

    Li M, Wang Q, Wang G, Yuan Z, Song W, Lou R, Liu Z, Huang Y, Liu Z, Lei H, Yin Z, Wang S 2021 Nat. Commun. 12 3129Google Scholar

    [48]

    Ye L D, Kang M G, Liu J W, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R, Checkelsky J G 2018 Nature 555 638Google Scholar

    [49]

    Yin J X, Zhang S S, Li H, Jiang K, Chang G Q, Zhang B J, Lian B, Xiang C, Belopolski I, Zheng H, Cochran T A, Xu S Y, Bian G, Liu K, Chang T R, Lin H, Lu Z Y, Wang Z Q, Jia S, Wang W H, Hasan M Z 2018 Nature 562 91Google Scholar

    [50]

    Xu X T, Yin J X, Ma W, Tien H J, Qiang X B, Reddy P V S, Zhou H, Shen J, Lu H Z, Chang T R, Qu Z, Jia S 2022 Nat. Commun. 13 1197Google Scholar

    [51]

    Sun Z Y, Zhou H, Wang C X, Kumar S, Geng D Y, Yue S S, Han X, Haraguchi Y, Shimada K, Cheng P, Chen L, Shi Y G, Wu K H, Meng S, Feng B J 2022 Nano Lett. 22 4596Google Scholar

    [52]

    Jiang J, Liang Q, Meng R, Yang Q, Tan C, Sun X, Chen X 2017 Nanoscale 9 2992Google Scholar

    [53]

    Smidstrup S, Stradi D, Wellendorff J, Khomyakov P A, Vej-Hansen U G, Lee M E, Ghosh T, Jónsson E, Jónsson H, Stokbro K 2017 Phys. Rev. B 96 195309Google Scholar

    [54]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [55]

    Marmolejo-Tejada J M, Dolui K, Lazic P, Chang P H, Smidstrup S, Stradi D, Stokbro K, Nikolić B K 2017 Nano Lett. 179 5626Google Scholar

    [56]

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2020 J. Phys. Condens. Matter 32 015901Google Scholar

    [57]

    van Setten M J, Giantomassi M, Bousquet E, Verstraete M J, Hamann D R, Gonze X, Rignanese G M 2017 Comput. Phys. Commun. 226 39Google Scholar

    [58]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [59]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [60]

    Mortazavi B, Zhuang X, Rabczuk T 2022 Appl. Phys. A 128 934Google Scholar

    [61]

    Meng R S, Pereira L D, Locquet J P, Afanas'ev V, Pourtois G, Houssa M 2022 npj Comput. Mater. 8 230Google Scholar

    [62]

    Lado J L, Fernández-Rossier J 2017 2D Mater. 4 035002Google Scholar

    [63]

    Daalderop G H O, Kelly P J, Schuurmans M F H 1990 Phys. Rev. B 41 11919Google Scholar

    [64]

    姜楠, 李奥林, 蘧水仙, 勾思, 欧阳方平 2022 物理学报 71 206303Google Scholar

    Jiang N, Li A L, Qu S X, Gou S, Ouyang F P 2022 Acta Phys. Sin. 71 206303Google Scholar

    [65]

    Lv H Y, Lu W J, Shao D F, Liu Y, Sun Y P 2015 Phys. Rev. B 92 214419Google Scholar

    [66]

    Webster L, Yan J A 2018 Phys. Rev. B 98 144411Google Scholar

    [67]

    Stradi D, Martinez U, Blom A, Brandbyge M, Stokbro K 2016 Phys. Rev. B 93 155302Google Scholar

    [68]

    Gunst T, Markussen T, Stokbro K, Brandbyge M 2016 Phys. Rev. B 93 035414Google Scholar

    [69]

    Lee I H, Martin R M 1997 Phys. Rev. B 56 7197Google Scholar

    [70]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

  • [1] 柯少秋, 叶先峰, 张昊俊, 聂晓蕾, 陈天天, 刘承姗, 朱婉婷, 魏平, 赵文俞. 正负磁阻共存的Fe/Bi0.5Sb1.5Te3热电磁薄膜. 物理学报, 2024, 73(22): 227301. doi: 10.7498/aps.73.20240701
    [2] 任延英, 李雅宁, 柳洪盛, 徐楠, 郭坤, 徐朝辉, 陈鑫, 高峻峰. 过渡金属元素掺杂对磁铁矿磁矩及磁各向异性的调控. 物理学报, 2024, 73(6): 066104. doi: 10.7498/aps.73.20231744
    [3] 姜舟, 蒋雪, 赵纪军. 二维kagome晶格过渡金属酞菁基异质结的电子性质. 物理学报, 2023, 72(24): 247502. doi: 10.7498/aps.72.20230921
    [4] 卿煜林, 彭小莉, 胡爱元. 自旋为1的双层平方晶格阻挫模型的相变. 物理学报, 2022, 71(4): 047501. doi: 10.7498/aps.71.20211685
    [5] 孟婧, 冯心薇, 邵倾蓉, 赵佳鹏, 谢亚丽, 何为, 詹清峰. 具有不同交换偏置方向的外延FeGa/IrMn双层膜的磁各向异性与磁化翻转. 物理学报, 2022, 71(12): 127501. doi: 10.7498/aps.71.20220166
    [6] 王贺岩, 高怡帆, 廖家宝, 陈俊彩, 李怡莲, 吴怡, 徐国亮, 安义鹏. 二维NiBr2单层自旋电子输运以及光电性质. 物理学报, 2022, 71(9): 097502. doi: 10.7498/aps.71.20212384
    [7] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控. 物理学报, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [8] 杨雪, 杨青慧, 张怀武, 文岐业, 白飞明, 钟智勇, 张鼎, 黄建涛. 面外取向的(BiTm)3(GaFe)5O12磁光单晶薄膜制备及取向机理分析. 物理学报, 2021, 70(10): 107801. doi: 10.7498/aps.70.20202209
    [9] 黄玉昊, 张贵涛, 王如倩, 陈乾, 王金兰. 二维双金属铁磁半导体CrMoI6的电子结构与稳定性. 物理学报, 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [10] 文林, 胡爱元. 双二次交换作用和各向异性对反铁磁体相变温度的影响. 物理学报, 2020, 69(10): 107501. doi: 10.7498/aps.69.20200077
    [11] 刘祥, 米文博. Verwey相变处Fe3O4的结构、磁性和电输运特性. 物理学报, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [12] 卢启海, 唐晓莉, 宋玉哲, 左显维, 韩根亮, 闫鹏勋, 刘维民. 氮化铁薄膜晶相合成热分析及其磁性. 物理学报, 2019, 68(11): 118101. doi: 10.7498/aps.68.20182195
    [13] 曹永泽, 赵越. 交变力磁力显微镜: 在三维空间同时观测静态和动态磁畴. 物理学报, 2019, 68(16): 168502. doi: 10.7498/aps.68.20190510
    [14] 肖嘉星, 鲁军, 朱礼军, 赵建华. 垂直磁各向异性L10-Mn1.67Ga超薄膜分子束外延生长与磁性研究. 物理学报, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [15] 聂帅华, 朱礼军, 潘东, 鲁军, 赵建华. 分子束外延制备的垂直易磁化MnAl薄膜结构和磁性. 物理学报, 2013, 62(17): 178103. doi: 10.7498/aps.62.178103
    [16] 胡艳春, 王艳文, 张克磊, 王海英, 马恒, 路庆凤. 空穴掺杂Sr2FeMoO6的晶体结构及磁性研究. 物理学报, 2012, 61(22): 226101. doi: 10.7498/aps.61.226101
    [17] 陈家洛, 狄国庆. 磁各向异性热电效应对自旋相关器件的影响. 物理学报, 2012, 61(20): 207201. doi: 10.7498/aps.61.207201
    [18] 敖 琪, 张瓦利, 张 熠, 吴建生. Nd-Fe-B/FeCo多层纳米复合膜的结构和磁性. 物理学报, 2007, 56(2): 1135-1140. doi: 10.7498/aps.56.1135
    [19] 郭玉献, 王 劼, 徐彭寿, 李红红, 蔡建旺. Co0.9Fe0.1薄膜面内元素分辨的磁各向异性. 物理学报, 2007, 56(2): 1121-1126. doi: 10.7498/aps.56.1121
    [20] 李锐鹏, 王 劼, 李红红, 郭玉献, 王 锋, 胡志伟. 软x射线磁性圆二色吸收谱研究铁单晶薄膜的面内磁各向异性. 物理学报, 2005, 54(8): 3851-3855. doi: 10.7498/aps.54.3851
计量
  • 文章访问数:  4891
  • PDF下载量:  347
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-18
  • 修回日期:  2023-09-08
  • 上网日期:  2023-12-01
  • 刊出日期:  2023-12-20

/

返回文章
返回