搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮化铁薄膜晶相合成热分析及其磁性

卢启海 唐晓莉 宋玉哲 左显维 韩根亮 闫鹏勋 刘维民

引用本文:
Citation:

氮化铁薄膜晶相合成热分析及其磁性

卢启海, 唐晓莉, 宋玉哲, 左显维, 韩根亮, 闫鹏勋, 刘维民

Thermal analysis on crystal phase synthesis of iron nitride film and its magnetic properties

Lu Qi-Hai, Tang Xiao-Li, Song Yu-Zhe, Zuo Xian-Wei, Han Gen-Liang, Yan Peng-Xun, Liu Wei-Min
PDF
HTML
导出引用
  • 研究Fe-N体系晶相转变(相变)规律对于高效合成高自旋极化率的γ'-Fe4N薄膜材料非常重要. 利用同步热分析(TG-DSC)研究了氮化铁薄膜的相变规律. TG-DSC的结果显示, 在10 ℃/min的升温速率下, γ''-FeN薄膜在常温到800 ℃之间共有5次相变, 分别为I, γ''-FeN→ξ-Fe2N; II, ξ-Fe2N→ε-Fe3N; III, ε-Fe3N→γ'-Fe4N; IV, γ'-Fe4N→γ-Fe; 以及V, γ-Fe→α-Fe. 利用真空退火技术有效调控了氮化铁薄膜的晶相. X-射线衍射测试结果显示, 直接在纯氮气中溅射得到的氮化铁薄膜是单相的γ''-FeN, 经350, 380和430 ℃退火可分别获得单相的ξ-Fe2N, ε-Fe3N和γ'-Fe4N. 研究了氮化铁薄膜的磁学性能. 振动样品磁强计测试结果显示, γ'-Fe4N薄膜在面内/面外表现出明显的磁各向异性, 属于典型的磁形状各向异性.
    The phase transition law of Fe-N system is very important for efficiently synthesizing single-phase γ'-Fe4N thin films. The γ"-FeN thin films are deposited on silicon wafers via DC reactive magnetron sputtering; some of them are stripped from the silicon wafers and measured by using the synchronous thermal analysis (TG-DSC) for studying the phase transition law of Fe-N system. The results of TG-DSC show that at a heating rate of 10 ℃/min, the Fe-N system has five phase transitions in a temperature range between room temperature (RT) and 800 ℃, i.e. I (330−415 ℃): γ''-FeN→ξ-Fe2N with an endothermic value of 133.8 J/g; II (415−490 ℃): ξ-Fe2N→ε-Fe3N with no obvious latent heat of phase change; III (510−562 ℃): ε-Fe3N→γ'-Fe4N with an exotherm value of 29.3 J/g; IV (590−636 ℃): γ'-Fe4N→γ-Fe with an exotherm value of 42.6 J/g; V (636−690 ℃): γ-Fe→α-Fe with an endothermic value of 14.4 J/g. According to the phase transition law of Fe-N system, the crystal phase of iron nitride thin film is effectively regulated by vacuum annealing. The x-ray diffraction pattern (XRD) results show that the iron nitride thin film obtained by direct-sputtering in pure N2 is a single-phase γ"-FeN film, and it becomes a single-phase ξ-Fe2N film after being annealed at 350 ℃ for 2 h, a single-phase ε-Fe3N film after being annealed at 380 ℃ for 2 h, and a single-phase γ'-Fe4N film after being annealed at 430 ℃ for 7 h. The annealing temperature for the phase transition of Fe-N thin film is generally lower than that predicted by the TG-DSC experimental results, because it is affected by the annealing time too, that is, prolonging the annealing time at a lower temperature is also effective for regulating the crystal phase of Fe-N thin film. The magnetic properties of the Fe-N thin film are also studied via vibrating sample magnetometer (VSM) at room temperature. The γ'-Fe4N polycrystalline thin film shows an easy-magnetized hysteresis loop for the isotropic in-plane one, but a hard-magnetized hysteresis loop with a large demagnetizing field for the out-of-plane one, which belongs to the typical magnetic shape anisotropy. However, their saturation magnetizations are really the same (about 950 emu/cm3) both in the plane and out of the plane.
      通信作者: 唐晓莉, tangtang122@uestc.edu.cn
    • 基金项目: 电子薄膜与集成器件国家重点实验室开放课题(批准号: KFJJ201703)、国家自然科学基金(批准号: 51772047)、国家自然科学基金地区科学基金(批准号: 51761001, 51665003, 21864003)、甘肃省自然科学基金(批准号: 17JR5RA180)、兰州市人才创新创业项目(批准号: 2016-RC-80)和2018年度“西部青年学者”项目资助的课题.
      Corresponding author: Tang Xiao-Li, tangtang122@uestc.edu.cn
    • Funds: Project supported by the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices, China (Grant No. KFJJ201703), the National Natural Science Foundation of China (Grant No. 51772047), the Fund for Less Developed Regions of the National Natural Science Foundation of China (Grant Nos. 51761001, 51665003, 21864003), the Natural Science Foundation of Gansu Province, China (Grant No. 17JR5RA180), the Lanzhou Talent Innovation and Entrepreneurship Project, China (Grant No. 2016-RC-80), and the 2018 "Western Young Scholars" Project.
    [1]

    de Groot R A, Mueller F M, van Engen P G, et al. 1983 Phys. Rev. Lett. 50 2024Google Scholar

    [2]

    任尚坤, 张凤鸣, 都有为 2004 物理学进展 24 381Google Scholar

    Ren S K, Zhang F M, Du Y W 2004 Prog. Phys. 24 381Google Scholar

    [3]

    Strijkers G J, Ji Y, Yang F Y, et al. 2001 Phys. Rev. B 63 104510Google Scholar

    [4]

    Vahidi M, Gifford J A, Zhang S K, et al. 2014 APL Mater. 2 046108Google Scholar

    [5]

    Li S, Takahashi Y K, Sakuraba Y, et al. 2016 Appl. Phys. Lett. 108 122404Google Scholar

    [6]

    Bosu S, Sakuraba Y, Sasaki T T, et al. 2016 Scripta Mater. 110 70Google Scholar

    [7]

    Ramsteiner M, Brandt O, Flissikowski T, et al. 2008 Phys. Rev. B 78 121303Google Scholar

    [8]

    Bruski P, Manzke Y, Farshchi R, et al. 2013 Appl. Phys. Lett. 103 052406Google Scholar

    [9]

    张炜, 千正男, 隋郁, 等 2005 物理学报 54 4879Google Scholar

    Zhang W, Qian Z N, Sui Y, et al. 2005 Acta Phys. Sin. 54 4879Google Scholar

    [10]

    王本阳, 千正男, 隋郁, 等 2005 物理学报 54 3386Google Scholar

    Wang B Y, Qian Z N, Sui Y, et al. 2005 Acta Phys. Sin. 54 3386Google Scholar

    [11]

    Ji Y, Strijkers G J, Yang F Y, et al. 2001 Phys. Rev. Lett. 86 5585Google Scholar

    [12]

    Ding Y, Yuan C, Wang Z, et al. 2014 Appl. Phys. Lett. 105 092401Google Scholar

    [13]

    Wada E, Watanabe K, Shirahata Y, et al. 2010 Appl. Phys. Lett. 96 102510Google Scholar

    [14]

    唐晓莉, 张怀武, 苏桦, 等 2006 无机材料学报 21 741Google Scholar

    Tang X L, Zhang H W, Su Y, et al. 2006 J. Inorg. Mater. 21 741Google Scholar

    [15]

    Wang L L, Zheng W T, Gong J, et al. 2009 J. Alloy. Compd. 467 1Google Scholar

    [16]

    Mi W B, Guob Z B, Fenga X P, et al. 2013 Acta Mater. 61 6387Google Scholar

    [17]

    Kokado S, Fujima N, Harigaya K, et al. 2006 Phys. Rev. B 73 172410Google Scholar

    [18]

    Wang X, Zheng W T, Tian H W, et al. 2003 Appl. Surf. Sci. 220 30Google Scholar

    [19]

    Wang L L, Wang X, Ma N, et al. 2006 Surf. Coat. Tech. 201 786Google Scholar

    [20]

    Wang L L, Wang X, Zheng W T, et al. 2006 Mater. Chem. Phys. 100 304Google Scholar

    [21]

    Navío C, Alvarez J, Capitan M J, et al. 2009 Appl. Phys. Lett. 94 263112Google Scholar

    [22]

    Zhang Q, Yang S A, Mi W, et al. 2016 Adv. Mater. 28 959Google Scholar

    [23]

    Mi W B, Feng X P, Duan X F, et al. 2012 Thin Solid Films 520 7035Google Scholar

    [24]

    Zhang Y, Mi W, Wang X, et al. 2015 Phys. Chem. Chem. Phys. 17 15435Google Scholar

    [25]

    Mi W B, Feng X P, Bai H L 2011 J. Magn. Magn. Mater. 323 1909Google Scholar

    [26]

    米文博, 王晓姹 2015 高自旋极化磁性材料(天津: 天津大学出版社) 第124页

    Mi W B, Wang X C 2015 High Spin Polarized Magnetic Materials (Tianjin: Tianjin University Press) p124 (in Chinese)

    [27]

    Widenmeyer M, Niewa R, Hansen T C, et al. 2013 Z. Anorg. Allg. Chem. 639 285Google Scholar

    [28]

    Widenmeyer M, Hansen T C, Meissner E, et al. 2014 Z. Anorg. Allg. Chem. 640 1265Google Scholar

    [29]

    Lu Q, Xie M, Han G, et al. 2019 J. Magn. Magn. Mater. 474 76Google Scholar

    [30]

    Mohn P, Matar S F 1999 J. Magn. Magn. Mater. 191 234Google Scholar

  • 图 1  Fe-N体系相图[24]

    Fig. 1.  Phase diagram of Fe-N system[24].

    图 2  溅射得到的氮化铁薄膜的AFM图谱

    Fig. 2.  AFM spectrum of the iron nitride film obtained by sputtering.

    图 3  不同温度退火2 h前后的氮化铁薄膜的XRD图谱

    Fig. 3.  XRD patterns of iron nitride films before and after annealing at different temperatures for 2 hours.

    图 4  430 ℃退火不同时间的氮化铁薄膜的XRD图谱[29]

    Fig. 4.  XRD pattern of iron nitride films with different annealing time at 430 ℃[29].

    图 5  氮化铁薄膜的TG-DSC曲线(虚线为DTG, 是TG的一阶导数)

    Fig. 5.  TG-DSC curves of iron nitride film (dotted line is DTG, which is the first derivative of TG).

    图 6  氮化铁薄膜的面内VSM图谱

    Fig. 6.  In-plane VSM pattern of iron nitride films.

    图 7  γ'-Fe4N薄膜的面内和面外VSM图谱

    Fig. 7.  In-plane & out-of-plane VSM pattern of the γ'-Fe4N film

    表 1  TG-DSC曲线关键节点处Fe-N的化学组分、主要晶相和晶型

    Table 1.  Chemical composition, main crystal phase, and crystal form of the Fe-N at key nodes of the TG-DSC curve.

    温度/℃化学组分主要晶相晶型
    330FeN1.1γ''-FeN立方
    415Fe2N1.3ξ-Fe2N六角
    490Fe3N1.4ε-Fe3N六角
    510Fe3N1.3ε-Fe3N六角
    562Fe4Nγ'-Fe4N立方 (Fe构成面心立方, N位于体心)
    590Fe4N0.7γ'-Fe4N立方
    636Fe4N0.37γ-Fe面心立方
    690Feα-Fe体心立方
    下载: 导出CSV
  • [1]

    de Groot R A, Mueller F M, van Engen P G, et al. 1983 Phys. Rev. Lett. 50 2024Google Scholar

    [2]

    任尚坤, 张凤鸣, 都有为 2004 物理学进展 24 381Google Scholar

    Ren S K, Zhang F M, Du Y W 2004 Prog. Phys. 24 381Google Scholar

    [3]

    Strijkers G J, Ji Y, Yang F Y, et al. 2001 Phys. Rev. B 63 104510Google Scholar

    [4]

    Vahidi M, Gifford J A, Zhang S K, et al. 2014 APL Mater. 2 046108Google Scholar

    [5]

    Li S, Takahashi Y K, Sakuraba Y, et al. 2016 Appl. Phys. Lett. 108 122404Google Scholar

    [6]

    Bosu S, Sakuraba Y, Sasaki T T, et al. 2016 Scripta Mater. 110 70Google Scholar

    [7]

    Ramsteiner M, Brandt O, Flissikowski T, et al. 2008 Phys. Rev. B 78 121303Google Scholar

    [8]

    Bruski P, Manzke Y, Farshchi R, et al. 2013 Appl. Phys. Lett. 103 052406Google Scholar

    [9]

    张炜, 千正男, 隋郁, 等 2005 物理学报 54 4879Google Scholar

    Zhang W, Qian Z N, Sui Y, et al. 2005 Acta Phys. Sin. 54 4879Google Scholar

    [10]

    王本阳, 千正男, 隋郁, 等 2005 物理学报 54 3386Google Scholar

    Wang B Y, Qian Z N, Sui Y, et al. 2005 Acta Phys. Sin. 54 3386Google Scholar

    [11]

    Ji Y, Strijkers G J, Yang F Y, et al. 2001 Phys. Rev. Lett. 86 5585Google Scholar

    [12]

    Ding Y, Yuan C, Wang Z, et al. 2014 Appl. Phys. Lett. 105 092401Google Scholar

    [13]

    Wada E, Watanabe K, Shirahata Y, et al. 2010 Appl. Phys. Lett. 96 102510Google Scholar

    [14]

    唐晓莉, 张怀武, 苏桦, 等 2006 无机材料学报 21 741Google Scholar

    Tang X L, Zhang H W, Su Y, et al. 2006 J. Inorg. Mater. 21 741Google Scholar

    [15]

    Wang L L, Zheng W T, Gong J, et al. 2009 J. Alloy. Compd. 467 1Google Scholar

    [16]

    Mi W B, Guob Z B, Fenga X P, et al. 2013 Acta Mater. 61 6387Google Scholar

    [17]

    Kokado S, Fujima N, Harigaya K, et al. 2006 Phys. Rev. B 73 172410Google Scholar

    [18]

    Wang X, Zheng W T, Tian H W, et al. 2003 Appl. Surf. Sci. 220 30Google Scholar

    [19]

    Wang L L, Wang X, Ma N, et al. 2006 Surf. Coat. Tech. 201 786Google Scholar

    [20]

    Wang L L, Wang X, Zheng W T, et al. 2006 Mater. Chem. Phys. 100 304Google Scholar

    [21]

    Navío C, Alvarez J, Capitan M J, et al. 2009 Appl. Phys. Lett. 94 263112Google Scholar

    [22]

    Zhang Q, Yang S A, Mi W, et al. 2016 Adv. Mater. 28 959Google Scholar

    [23]

    Mi W B, Feng X P, Duan X F, et al. 2012 Thin Solid Films 520 7035Google Scholar

    [24]

    Zhang Y, Mi W, Wang X, et al. 2015 Phys. Chem. Chem. Phys. 17 15435Google Scholar

    [25]

    Mi W B, Feng X P, Bai H L 2011 J. Magn. Magn. Mater. 323 1909Google Scholar

    [26]

    米文博, 王晓姹 2015 高自旋极化磁性材料(天津: 天津大学出版社) 第124页

    Mi W B, Wang X C 2015 High Spin Polarized Magnetic Materials (Tianjin: Tianjin University Press) p124 (in Chinese)

    [27]

    Widenmeyer M, Niewa R, Hansen T C, et al. 2013 Z. Anorg. Allg. Chem. 639 285Google Scholar

    [28]

    Widenmeyer M, Hansen T C, Meissner E, et al. 2014 Z. Anorg. Allg. Chem. 640 1265Google Scholar

    [29]

    Lu Q, Xie M, Han G, et al. 2019 J. Magn. Magn. Mater. 474 76Google Scholar

    [30]

    Mohn P, Matar S F 1999 J. Magn. Magn. Mater. 191 234Google Scholar

  • [1] 任延英, 李雅宁, 柳洪盛, 徐楠, 郭坤, 徐朝辉, 陈鑫, 高峻峰. 过渡金属元素掺杂对磁铁矿磁矩及磁各向异性的调控. 物理学报, 2024, 73(6): 066104. doi: 10.7498/aps.73.20231744
    [2] 孟婧, 冯心薇, 邵倾蓉, 赵佳鹏, 谢亚丽, 何为, 詹清峰. 具有不同交换偏置方向的外延FeGa/IrMn双层膜的磁各向异性与磁化翻转. 物理学报, 2022, 71(12): 127501. doi: 10.7498/aps.71.20220166
    [3] 杨雪, 杨青慧, 张怀武, 文岐业, 白飞明, 钟智勇, 张鼎, 黄建涛. 面外取向的(BiTm)3(GaFe)5O12磁光单晶薄膜制备及取向机理分析. 物理学报, 2021, 70(10): 107801. doi: 10.7498/aps.70.20202209
    [4] 黄玉昊, 张贵涛, 王如倩, 陈乾, 王金兰. 二维双金属铁磁半导体CrMoI6的电子结构与稳定性. 物理学报, 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [5] 刘祥, 米文博. Verwey相变处Fe3O4的结构、磁性和电输运特性. 物理学报, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [6] 杨艳敏, 李佳, 马洪然, 杨广, 毛秀娟, 李聪聪. Co2-基Heusler合金Co2FeAl1–xSix(x = 0.25, x = 0.5, x = 0.75)的结构、电子结构及热电特性的第一性原理研究. 物理学报, 2019, 68(4): 046101. doi: 10.7498/aps.68.20181641
    [7] 许佳玲, 贾利云, 靳晓庆, 郝兴楠, 马丽, 侯登录. 系列CoMnZnZ四元Heusler化合物的结构和半金属铁磁性. 物理学报, 2019, 68(15): 157501. doi: 10.7498/aps.68.20190207
    [8] 姚仲瑜, 孙丽, 潘孟美, 孙书娟, 刘汉军. 第一性原理研究half-Heusler合金VLiBi和CrLiBi的半金属铁磁性. 物理学报, 2018, 67(21): 217501. doi: 10.7498/aps.67.20181129
    [9] 姚仲瑜, 孙丽, 潘孟美, 孙书娟. 第一性原理研究semi-Heusler合金CoCrTe和CoCrSb的半金属性和磁性. 物理学报, 2016, 65(12): 127501. doi: 10.7498/aps.65.127501
    [10] 肖嘉星, 鲁军, 朱礼军, 赵建华. 垂直磁各向异性L10-Mn1.67Ga超薄膜分子束外延生长与磁性研究. 物理学报, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [11] 武力乾, 齐伟华, 李雨辰, 李世强, 李壮志, 唐贵德, 葛兴烁, 丁丽莉. 热处理对钙钛矿锰氧化物La0.95Sr0.05MnO3离子价态和磁结构的影响. 物理学报, 2016, 65(2): 027501. doi: 10.7498/aps.65.027501
    [12] 陈家洛, 狄国庆. 磁各向异性热电效应对自旋相关器件的影响. 物理学报, 2012, 61(20): 207201. doi: 10.7498/aps.61.207201
    [13] 杜音, 王文洪, 张小明, 刘恩克, 吴光恒. 铁基Heusler合金Fe2Co1-xCrxSi的结构、磁性和输运性质的研究. 物理学报, 2012, 61(14): 147304. doi: 10.7498/aps.61.147304
    [14] 赵晶晶, 祁欣, 刘恩克, 朱伟, 钱金凤, 李贵江, 王文洪, 吴光恒. Co50Fe25-xMnxSi25系列合金的结构、磁性和半金属性研究. 物理学报, 2011, 60(4): 047108. doi: 10.7498/aps.60.047108
    [15] 陈宇辉, 王阳, 左方圆, 赖天树, 吴谊群. 半金属锑薄膜中电子动力学研究. 物理学报, 2009, 58(5): 3548-3552. doi: 10.7498/aps.58.3548
    [16] 陈怡, 申江. 稀土金属间化合物RFe2Zn20-xInx的结构属性研究. 物理学报, 2009, 58(13): 146-S150. doi: 10.7498/aps.58.146
    [17] 郭玉献, 王 劼, 徐彭寿, 李红红, 蔡建旺. Co0.9Fe0.1薄膜面内元素分辨的磁各向异性. 物理学报, 2007, 56(2): 1121-1126. doi: 10.7498/aps.56.1121
    [18] 张礼杰, 雷 鸣, 王宇明, 李建立, 孙 彧, 刘景和. Yb3+掺杂KY(WO4)2激光晶体生长、结构与光谱分析. 物理学报, 2006, 55(6): 3141-3146. doi: 10.7498/aps.55.3141
    [19] 李锐鹏, 王 劼, 李红红, 郭玉献, 王 锋, 胡志伟. 软x射线磁性圆二色吸收谱研究铁单晶薄膜的面内磁各向异性. 物理学报, 2005, 54(8): 3851-3855. doi: 10.7498/aps.54.3851
    [20] 陈镇平, 张金仓, 程国生, 李喜贵, 章讯生. 金属氧化物超导陶瓷Y-123体系烧结过程与结构缺陷的正电子实验研究. 物理学报, 2001, 50(3): 550-555. doi: 10.7498/aps.50.550
计量
  • 文章访问数:  11589
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-12
  • 修回日期:  2019-03-14
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-05

/

返回文章
返回