搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有不同交换偏置方向的外延FeGa/IrMn双层膜的磁各向异性与磁化翻转

孟婧 冯心薇 邵倾蓉 赵佳鹏 谢亚丽 何为 詹清峰

引用本文:
Citation:

具有不同交换偏置方向的外延FeGa/IrMn双层膜的磁各向异性与磁化翻转

孟婧, 冯心薇, 邵倾蓉, 赵佳鹏, 谢亚丽, 何为, 詹清峰

Magnetic anisotropy and reversal in epitaxial FeGa/IrMn bilayers with different orientations of exchange bias

Meng Jing, Feng Xin-Wei, Shao Qing-Rong, Zhao Jia-Peng, Xie Ya-Li, He Wei, Zhan Qing-Feng
PDF
HTML
导出引用
  • 采用磁控溅射方法在MgO(001)单晶衬底上制备了交换偏置分别沿着FeGa$ \left[100\right] $和[110]方向的FeGa/IrMn外延交换偏置双层膜, 研究了交换偏置取向对磁化翻转过程与磁化翻转场的影响. 铁磁共振场的角度依赖关系的测量与拟合, 表明样品存在不同取向的四重对称磁晶各向异性、单向交换磁各向异性和单轴磁各向异性的叠加. 矢量磁光克尔效应测量表明交换偏置沿着$ \left[100\right] $方向的样品在不同磁场方向下表现矩形、非对称和单边两步磁滞回线; 交换偏置沿着$ \left[110\right] $方向的样品在不同磁场方向下表现单边两步和双边两步磁滞回线. 考虑不同交换偏置方向的畴壁形核和位移模型, 能够很好地解释磁化翻转路径随磁场方向的变化规律和拟合磁化翻转场的角度依赖关系, 表明交换偏置方向的改变使得畴壁形核能发生显著变化.
    Epitaxial FeGa/IrMn bilayers with exchange biases along the FeGa[100] and [110] directions are prepared on MgO(001) single crystal substrates by magnetron sputtering through controlling the orientation of the external field in situ applied during growth. The effect of the exchange bias orientation on the magnetic switching process and the magnetic switching field are studied. The X-ray φ-scan indicates that the FeGa layer is epitaxially grown with a 45° in-plane rotation on the MgO(001) substrate along the FeGa(001)[110] direction and the MgO(001)[100] direction. The measurements of the angular dependence of the ferromagnetic resonance field and the corresponding fitting to the Kittel equation show that the samples have a superposition of fourfold symmetric magnetocrystalline anisotropy $ {K}_{1} $, unidirectional magnetic exchange bias anisotropy $ {K}_{\mathrm{e}\mathrm{b}} $, and uniaxial magnetic anisotropy $ {K}_{\mathrm{u}} $ with configuration of $ {K}_{\mathrm{e}\mathrm{b}}//\left[100\right] $ or $ {K}_{\mathrm{e}\mathrm{b}}//\left[110\right] $. The combined longitudinal and transverse magneto-optical Kerr effect measurements show that sample with $ {K}_{\mathrm{e}\mathrm{b}}//\left[100\right] $ exhibits square loops, asymmetrically shaped loops, and one-sided two-step loops in different external magnetic field directions. In contrast, the sample with $ {K}_{\mathrm{e}\mathrm{b}}//\left[110\right] $ exhibits one-sided two-step and two-sided two-step loops as the magnetic field orientation changes. Because the $ {K}_{1} $ is superimposed by $ {K}_{\mathrm{u}} $ and $ {K}_{\mathrm{e}\mathrm{b}} $, the in-plane fourfold symmetry of the magnetic anisotropy energy is broken. The local minima are no longer strictly along the in-plane $ \left\langle{100}\right\rangle $ directions, but make a deviation angle which depends on the relative orientation and strength of magnetic anisotropy. A model based on the domain wall nucleation and propagation is proposed with considering the different orientations of $ {K}_{\mathrm{e}\mathrm{b}} $, which can nicely explain the change of the magnetic switching route with the magnetic field orientation and fit the angular dependence of the magnetic switching fields, indicating a significant change of domain wall nucleation energy as the orientation of $ {K}_{\mathrm{e}\mathrm{b}} $ changes.
      通信作者: 詹清峰, qfzhan@phy.ecnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174103, 11874150)和上海市科委科技基金(批准号: 21JC1402300)资助的课题.
      Corresponding author: Zhan Qing-Feng, qfzhan@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174103, 11874150) and the Shanghai Committee of Science and Technology, China (Grant No. 21JC1402300).
    [1]

    Nogues J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203Google Scholar

    [2]

    Blachowicz T, Ehrmann A 2021 Coatings 11 122Google Scholar

    [3]

    Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413Google Scholar

    [4]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [5]

    Wen X, Wu R, Yang W Y, Wang C S, Liu S Q, Han J Z, Yang J B 2020 Chin. Phys. B 29 098503Google Scholar

    [6]

    Wu S M, Cybart S A, Yu P, Rossell M D, Zhang J X, Ramesh R, Dynes R C 2010 Nat. Mater. 9 756Google Scholar

    [7]

    Schafer D, Geshev J, Nicolodi S, Pereira L G, Schmidt J E, Grande P L 2008 Appl. Phys. Lett. 93 042501Google Scholar

    [8]

    Zhang X S, Zhan Q F, Dai G H, Liu Y W, Zuo Z H, Yang H L, Chen B, Li R W 2013 Appl. Phys. Lett. 102 022412Google Scholar

    [9]

    Jiménez E, Camarero J, Perna P, Mikuszeit N, Terán F J, Sort J, Nogués J, García Martín J M, Hoffmann A, Dieny B, Miranda R 2011 J. Appl. Phys. 109 07D730Google Scholar

    [10]

    Zhan Q F, Vandezande S, Van Haesendonck C, Temst K 2007 Appl. Phys. Lett. 91 122510Google Scholar

    [11]

    Bera A K, Kumar D 2020 AIP Conf. Proc. 2265 030315Google Scholar

    [12]

    Wang S G, Kohn A, Wang C, Petford Long A K, Lee S, Fan R, Goff J P, Singh L J, Barber Z H, Ward R C C 2009 J. Phys. D 42 225001Google Scholar

    [13]

    Camarero J, Sort J, Hoffmann A, Garcia Martin J M, Dieny B, Miranda R, Nogues J 2005 Phys. Rev. Lett. 95 057204Google Scholar

    [14]

    Zhan Q F, Zhang W, Krishnan K M 2011 Phys. Rev. B 83 094404Google Scholar

    [15]

    Zhang Y, Zhan Q F, Zuo Z H, Yang H L, Zhang X S, Dai G H, Liu Y W, Yu Y, Wang J, Wang B M, Li R W 2015 Phys. Rev. B 91 174411Google Scholar

    [16]

    Chen Y, Washburn J 1996 Phys. Rev. Lett. 77 4046Google Scholar

    [17]

    Zhan Q F, Krishnan K M 2010 Appl. Phys. Lett. 96 112506Google Scholar

    [18]

    Mendes J B S, Cunha R O, Alves Santos O, Ribeiro P R T, Machado F L A, Rodríguez Suárez R L, Azevedo A, Rezende S M 2014 Phys. Rev. B 89 140406Google Scholar

    [19]

    Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005Google Scholar

    [20]

    Sun R, Li Y, Xie Z K, Li Y, Zhao X T, Liu W, Zhang Z D, Zhu T, Cheng Z H, He W 2020 J. Magn. Magn. Mater. 497 165971Google Scholar

    [21]

    Farle M 1998 Rep. Prog. Phys. 61 755Google Scholar

    [22]

    Li Y, Li Y, Liu Q, Xie Z K, Vetter E, Yuan Z, He W, Liu H L, Sun D L, Xia K, Yu W, Sun Y B, Zhao J J, Zhang X Q, Cheng Z H 2019 New J. Phys. 21 103040Google Scholar

    [23]

    Zhan Q F, Stijn V, Kristiaan T, Chris V H 2009 New J. Phys. 11 063003Google Scholar

    [24]

    Dean J, Bryan M T, Morley N A, Hrkac G, Javed A, Gibbs M R J, Allwood D A 2011 J. Appl. Phys. 110 043902Google Scholar

    [25]

    Cowburn R P, Gray S J, Ferré J, Bland J A C, Miltat J 1995 J. Appl. Phys. 78 7210Google Scholar

    [26]

    Postava K, Jaffres H, Schuhl A, Van Dau F N, Goiran M, Fert A R 1997 J. Magn. Magn. Mater. 172 199Google Scholar

  • 图 1  样品FeGa/IrMn/MgO(001)的X射线衍射图 (a) θ-2θ 扫描图; (b) 面内φ扫描图

    Fig. 1.  X-ray diffraction measurement for the sample of FeGa/IrMn/MgO(001): (a) θ-2θ scan; (b) in-plane φ-scan.

    图 2  (a) FeGa单层膜和(b) $ {K}_{\mathrm{e}\mathrm{b}}//\left[100\right] $的FeGa/IrMn双层膜在${\varphi }_{H}=$ 0°, 30°, 45°时的代表性铁磁共振微分吸收谱; (c), (d) 相应的共振场$ {H}_{\mathrm{r}} $${\varphi }_{H}$的变化关系(空心点为实验值, 实线(a), (b)和虚线(c), (d)为拟合曲线)

    Fig. 2.  Representative ferromagnetic resonance derivative absorption spectra for (a) FeGa single layer and (b) FeGa/IrMn bilayer with $ {K}_{\mathrm{e}\mathrm{b}}//\left[100\right] $ measured at ${\varphi }_{H}=$ 0°, 30°, 45°; (c), (d) the corresponding resonance field $ {H}_{\mathrm{r}} $ as a function of ${\varphi }_{H}$(Open dots are the experimental data, solid (a), (b) and dashed (c), (d) lines are the theoretical fitting results).

    图 3  在不同外磁场方向$ {\varphi }_{H} $下, $ {K}_{\mathrm{e}\mathrm{b}}//\left[100\right] $$ {K}_{\mathrm{e}\mathrm{b}}//\left[110\right] $的FeGa/IrMn双层膜的典型纵向和横向MOKE磁滞回线(Ms是饱和磁化强度) (a)$ {K}_{\mathrm{e}\mathrm{b}}//\left[100\right], $ $ {\varphi }_{H}=0^\circ; $ (b) $ {K}_{\mathrm{e}\mathrm{b}}//\left[100\right], $ $ {\varphi }_{H}=30^\circ; $ (c) $ {K}_{\mathrm{e}\mathrm{b}}//\left[100\right], $ $ {\varphi }_{H}= $ $ 45^\circ; $ (d) $ {K}_{\mathrm{e}\mathrm{b}}//\left[100\right], $ $ {\varphi }_{H}=90^\circ $; (e) $ {K}_{\mathrm{e}\mathrm{b}}//\left[110\right], {\varphi }_{H}=0^\circ; $ (f) $ {K}_{\mathrm{e}\mathrm{b}}//\left[110\right], {\varphi }_{H}=35^\circ; $ (g) $ {K}_{\mathrm{e}\mathrm{b}}//\left[110\right], {\varphi }_{H}=45^\circ; $ (h) $ {K}_{\mathrm{e}\mathrm{b}}//\left[110\right], {\varphi }_{H}=90^\circ\mathrm{. } $蓝线和红线分别对应于磁滞回线的磁场下行支和磁场上行支; 磁化翻转过程中FeGa自旋方向用箭头表示; 相应的磁化翻转场也标记在图中

    Fig. 3.  Typical longitudinal and transverse MOKE loops at different external field orientations $ {\varphi }_{H} $ for the FeGa/IrMn bilayer with $ {K}_{\mathrm{e}\mathrm{b}}//\left[100\right] $ and $ {K}_{\mathrm{e}\mathrm{b}}//\left[110\right], $Ms is the saturation magnetization: (a) $ {K}_{\mathrm{e}\mathrm{b}}//\left[100\right], $ $ {\varphi }_{H}=0^\circ; $ (b) $ {K}_{\mathrm{e}\mathrm{b}}//\left[100\right], $ $ {\varphi }_{H}=30^\circ; $ (c)${K}_{\mathrm{e}\mathrm{b}}// $$ \left[100\right],$ $ {\varphi }_{H}= $ $ 45^\circ; $(d) $ {K}_{\mathrm{e}\mathrm{b}}//\left[100\right], $ $ {\varphi }_{H}=90^\circ $; (e) $ {K}_{\mathrm{e}\mathrm{b}}//\left[110\right], {\varphi }_{H}=0^\circ; $ (f) $ {K}_{\mathrm{e}\mathrm{b}}//\left[110\right], {\varphi }_{H}=35^\circ; $ (g) $ {K}_{\mathrm{e}\mathrm{b}}//\left[110\right], {\varphi }_{H}=45^\circ; $ (h) ${K}_{\mathrm{e}\mathrm{b}}//\left[110\right], $$ {\varphi }_{H}=90^\circ.$ The blue and red curves correspond to the magnetic field descending and ascending branches of hyste-resis loops, respectively; the arrows enclosed by a square represent the orientation of FeGa spins in the magnetic switching routes; the corresponding magnetic switching fields are presented as well.

    图 4  FeGa/IrMn双层膜的磁化翻转场随外磁场方向$ {\varphi }_{H} $的变化关系 (a)$ {K}_{\mathrm{e}\mathrm{b}}//\left[100\right] $; (b) $ {K}_{\mathrm{e}\mathrm{b}}//\left[110\right] $(实心和空心点对应于实验值, 实线和虚线对应于拟合曲线)

    Fig. 4.  External magnetic field orientation $ {\varphi }_{H} $ dependence of the magnetic switching fields for the FeGa/IrMn bilayers: (a) $ {K}_{\mathrm{e}\mathrm{b}}//\left[100\right] $; (b) $ {K}_{\mathrm{e}\mathrm{b}}//\left[110\right] $ (The solid and open dots represent experimental values, and the solid and dashed lines represent fitted curves).

    图 5  FeGa/IrMn双层膜的磁各向异性能随磁化强度方向的变化关系 (a) $ {K}_{\mathrm{e}\mathrm{b}}//\left[100\right] $; (b) $ {K}_{\mathrm{e}\mathrm{b}}//\left[110\right] $; (c), (d) 相对应的磁各向异性改变示意图

    Fig. 5.  Magnetic anisotropy energy as a function of orientation of magnetization in FeGa/IrMn bilayers: (a) $ {K}_{\mathrm{e}\mathrm{b}}//\left[100\right] $; (b) $ {K}_{\mathrm{e}\mathrm{b}}//\left[110\right] $; (c), (d) corresponding schematic diagram of magnetic anisotropy change.

  • [1]

    Nogues J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203Google Scholar

    [2]

    Blachowicz T, Ehrmann A 2021 Coatings 11 122Google Scholar

    [3]

    Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413Google Scholar

    [4]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [5]

    Wen X, Wu R, Yang W Y, Wang C S, Liu S Q, Han J Z, Yang J B 2020 Chin. Phys. B 29 098503Google Scholar

    [6]

    Wu S M, Cybart S A, Yu P, Rossell M D, Zhang J X, Ramesh R, Dynes R C 2010 Nat. Mater. 9 756Google Scholar

    [7]

    Schafer D, Geshev J, Nicolodi S, Pereira L G, Schmidt J E, Grande P L 2008 Appl. Phys. Lett. 93 042501Google Scholar

    [8]

    Zhang X S, Zhan Q F, Dai G H, Liu Y W, Zuo Z H, Yang H L, Chen B, Li R W 2013 Appl. Phys. Lett. 102 022412Google Scholar

    [9]

    Jiménez E, Camarero J, Perna P, Mikuszeit N, Terán F J, Sort J, Nogués J, García Martín J M, Hoffmann A, Dieny B, Miranda R 2011 J. Appl. Phys. 109 07D730Google Scholar

    [10]

    Zhan Q F, Vandezande S, Van Haesendonck C, Temst K 2007 Appl. Phys. Lett. 91 122510Google Scholar

    [11]

    Bera A K, Kumar D 2020 AIP Conf. Proc. 2265 030315Google Scholar

    [12]

    Wang S G, Kohn A, Wang C, Petford Long A K, Lee S, Fan R, Goff J P, Singh L J, Barber Z H, Ward R C C 2009 J. Phys. D 42 225001Google Scholar

    [13]

    Camarero J, Sort J, Hoffmann A, Garcia Martin J M, Dieny B, Miranda R, Nogues J 2005 Phys. Rev. Lett. 95 057204Google Scholar

    [14]

    Zhan Q F, Zhang W, Krishnan K M 2011 Phys. Rev. B 83 094404Google Scholar

    [15]

    Zhang Y, Zhan Q F, Zuo Z H, Yang H L, Zhang X S, Dai G H, Liu Y W, Yu Y, Wang J, Wang B M, Li R W 2015 Phys. Rev. B 91 174411Google Scholar

    [16]

    Chen Y, Washburn J 1996 Phys. Rev. Lett. 77 4046Google Scholar

    [17]

    Zhan Q F, Krishnan K M 2010 Appl. Phys. Lett. 96 112506Google Scholar

    [18]

    Mendes J B S, Cunha R O, Alves Santos O, Ribeiro P R T, Machado F L A, Rodríguez Suárez R L, Azevedo A, Rezende S M 2014 Phys. Rev. B 89 140406Google Scholar

    [19]

    Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005Google Scholar

    [20]

    Sun R, Li Y, Xie Z K, Li Y, Zhao X T, Liu W, Zhang Z D, Zhu T, Cheng Z H, He W 2020 J. Magn. Magn. Mater. 497 165971Google Scholar

    [21]

    Farle M 1998 Rep. Prog. Phys. 61 755Google Scholar

    [22]

    Li Y, Li Y, Liu Q, Xie Z K, Vetter E, Yuan Z, He W, Liu H L, Sun D L, Xia K, Yu W, Sun Y B, Zhao J J, Zhang X Q, Cheng Z H 2019 New J. Phys. 21 103040Google Scholar

    [23]

    Zhan Q F, Stijn V, Kristiaan T, Chris V H 2009 New J. Phys. 11 063003Google Scholar

    [24]

    Dean J, Bryan M T, Morley N A, Hrkac G, Javed A, Gibbs M R J, Allwood D A 2011 J. Appl. Phys. 110 043902Google Scholar

    [25]

    Cowburn R P, Gray S J, Ferré J, Bland J A C, Miltat J 1995 J. Appl. Phys. 78 7210Google Scholar

    [26]

    Postava K, Jaffres H, Schuhl A, Van Dau F N, Goiran M, Fert A R 1997 J. Magn. Magn. Mater. 172 199Google Scholar

  • [1] 任延英, 李雅宁, 柳洪盛, 徐楠, 郭坤, 徐朝辉, 陈鑫, 高峻峰. 过渡金属元素掺杂对磁铁矿磁矩及磁各向异性的调控. 物理学报, 2024, 73(6): 066104. doi: 10.7498/aps.73.20231744
    [2] 王日兴, 曾逸涵, 赵婧莉, 李连, 肖运昌. 自旋轨道矩协助自旋转移矩驱动磁化强度翻转. 物理学报, 2023, 72(8): 087202. doi: 10.7498/aps.72.20222433
    [3] 卿煜林, 彭小莉, 胡爱元. 自旋为1的双层平方晶格阻挫模型的相变. 物理学报, 2022, 71(4): 047501. doi: 10.7498/aps.71.20211685
    [4] 袁佳卉, 杨晓阔, 张斌, 陈亚博, 钟军, 危波, 宋明旭, 崔焕卿. 混合时钟驱动的自旋神经元器件激活特性和计算性能. 物理学报, 2021, 70(20): 207502. doi: 10.7498/aps.70.20210611
    [5] 杨雪, 杨青慧, 张怀武, 文岐业, 白飞明, 钟智勇, 张鼎, 黄建涛. 面外取向的(BiTm)3(GaFe)5O12磁光单晶薄膜制备及取向机理分析. 物理学报, 2021, 70(10): 107801. doi: 10.7498/aps.70.20202209
    [6] 黄玉昊, 张贵涛, 王如倩, 陈乾, 王金兰. 二维双金属铁磁半导体CrMoI6的电子结构与稳定性. 物理学报, 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [7] 文林, 胡爱元. 双二次交换作用和各向异性对反铁磁体相变温度的影响. 物理学报, 2020, 69(10): 107501. doi: 10.7498/aps.69.20200077
    [8] 许校嘉, 方峥, 陆轩昂, 叶慧群, 范晓珍, 郑金菊, 何兴伟, 郭春羽, 李文忠, 方允樟. 铁基合金薄带多次等温回火特性的研究. 物理学报, 2019, 68(13): 137501. doi: 10.7498/aps.68.20190017
    [9] 卢启海, 唐晓莉, 宋玉哲, 左显维, 韩根亮, 闫鹏勋, 刘维民. 氮化铁薄膜晶相合成热分析及其磁性. 物理学报, 2019, 68(11): 118101. doi: 10.7498/aps.68.20182195
    [10] 王日兴, 李雪, 李连, 肖运昌, 许思维. 三端磁隧道结的稳定性分析. 物理学报, 2019, 68(20): 207201. doi: 10.7498/aps.68.20190927
    [11] 姜兴东, 管兴胤, 黄娟娟, 范小龙, 薛德胜. N+注入修复外延Fe膜面内六重磁对称. 物理学报, 2019, 68(12): 126102. doi: 10.7498/aps.68.20190131
    [12] 陈爱天, 赵永刚. 多铁异质结构中逆磁电耦合效应的研究进展. 物理学报, 2018, 67(15): 157513. doi: 10.7498/aps.67.20181272
    [13] 肖嘉星, 鲁军, 朱礼军, 赵建华. 垂直磁各向异性L10-Mn1.67Ga超薄膜分子束外延生长与磁性研究. 物理学报, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [14] 聂帅华, 朱礼军, 潘东, 鲁军, 赵建华. 分子束外延制备的垂直易磁化MnAl薄膜结构和磁性. 物理学报, 2013, 62(17): 178103. doi: 10.7498/aps.62.178103
    [15] 郝建红, 高辉. 磁存储器环形带切口结构自由层磁化反转的微磁模拟. 物理学报, 2013, 62(5): 057502. doi: 10.7498/aps.62.057502
    [16] 陈家洛, 狄国庆. 磁各向异性热电效应对自旋相关器件的影响. 物理学报, 2012, 61(20): 207201. doi: 10.7498/aps.61.207201
    [17] 张辉, 曾德长. Tb0.3Dy0.7Fe2单晶中巨磁致伸缩的逆效应. 物理学报, 2010, 59(4): 2808-2814. doi: 10.7498/aps.59.2808
    [18] 高瑞鑫, 徐振, 陈达鑫, 徐初东, 陈志峰, 刘晓东, 周仕明, 赖天树. GdFeCo磁光薄膜中RE-TM反铁磁耦合与激光感应超快磁化翻转动力学研究. 物理学报, 2009, 58(1): 580-584. doi: 10.7498/aps.58.580
    [19] 郭玉献, 王 劼, 徐彭寿, 李红红, 蔡建旺. Co0.9Fe0.1薄膜面内元素分辨的磁各向异性. 物理学报, 2007, 56(2): 1121-1126. doi: 10.7498/aps.56.1121
    [20] 李锐鹏, 王 劼, 李红红, 郭玉献, 王 锋, 胡志伟. 软x射线磁性圆二色吸收谱研究铁单晶薄膜的面内磁各向异性. 物理学报, 2005, 54(8): 3851-3855. doi: 10.7498/aps.54.3851
计量
  • 文章访问数:  4797
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-23
  • 修回日期:  2022-02-26
  • 上网日期:  2022-03-09
  • 刊出日期:  2022-06-20

/

返回文章
返回