搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过渡金属原子X (X = Mn, Tc, Re) 掺杂二维WS2第一性原理研究

陈蓉 王远帆 王熠欣 梁前 谢泉

引用本文:
Citation:

过渡金属原子X (X = Mn, Tc, Re) 掺杂二维WS2第一性原理研究

陈蓉, 王远帆, 王熠欣, 梁前, 谢泉

First-principles study of transition metal atoms X (X = Mn, Tc, Re) doped two-dimensional WS2 materials

Chen Rong, Wang Yuan-Fan, Wang Yi-Xin, Liang Qian, Xie Quan
PDF
HTML
导出引用
  • 二维材料由于具有独特的电子结构和量子效应、丰富的可调控特性而受到凝聚态物理和材料科学的广泛关注, 其中通过过渡金属掺杂二维WS2形成的半金属铁磁性材料在自旋电子学领域中发挥着重要的作用 . 采用基于密度泛函理论的第一性原理赝势平面波方法计算了过渡金属原子X (X = Mn, Tc, Re) 掺杂二维WS2的电子结构、磁性和光学性质. 研究表明: 被过渡金属原子X掺杂的WS2体系在S-rich条件下比在W-rich条件下更稳定. 在 Mn掺杂后, 自旋向上通道中出现杂质能级, 导致WS2体系从自旋向上和自旋向下态密度完全对称的非磁性半导体转变为磁矩1.001 $ {\text{μ}}_{\text{B}} $的铁磁性半金属. 在Tc, Re掺杂后, 体系均转变为非磁性N型半导体. 所有掺杂体系杂质态均发生自旋劈裂现象, 且自旋劈裂程度逐渐减小. 同时发现 Mn, Tc, Re掺杂后, 表现出优异的光学性质, 它们的介电常数和折射系数与未掺杂WS2的体系相比明显增强, 吸收系数在低能量区域 (0—2.0 eV) 均出现红移现象.
    Spintronics is a particularly hot topic in recent years, which has aroused much attention. The spin freedom of electrons can be used to construct logic devices and memory devices. Generally, the most important spintronic properties are found in half-metal ferromagnets, which are considered as the ideal materials for building spintronic devices due to their ability to provide fully spin-polarised conduction electrons. Numerous experimental data and theoretical studies have confirmed that the intercalation, doping and adsorption of transition metal atoms can induce magnetic properties in two-dimensional WS2 material. Therefore, half-metal ferromagnets formed by doping WS2 play an important role in the field of spintronics. In this paper, we investigate the electronic structure, magnetic and optical properties of the WS2 doped with transition metal atoms X (X = Mn, Tc, Re) by the first-principles plane wave method based on density functional theory. The results show that the WS2 system doped with transition metal atoms X is more stable under S-rich condition than under W-rich condition. Especially, the WS2 system doped with Tc has a minimum value of formation energy of –1.292 eV under S-rich condition. After doping with Mn, impurity levels appear in the spin-up channels, resulting in the WS2 system changing from a non-magnetic semiconductor to half-metal ferromagnet with a magnetic moment of 1.001 $ {\text{μ}}_{\text{B}} $. Moreover, in the Mn-doped system, the densities of states are asymmetric in the spin-up channel and the spin-down channel. After being doped with Tc and Re, the systems are transformed into non-magnetic N-type semiconductors, and the densities of states in spin-up and spin-down channels are symmetric in Tc doping system and Re doping system. Whereafter, the spin orbit splitting of the impurity states near the Fermi level EF decreases successively from Mn to Re doped WS2 systems. Compared with the undoped two-dimensional WS2, the transition metal atoms X doped WS2 systems show that all doped systems not only have a significant red shift of optical absorption edges but also enhance peak value in infrared and visible light region, implying that the transition metal atoms X doped WS2 systems have great application prospects in infrared and visible light detection. We hope that thepresent study of two-dimensional WS2 will provide useful theoretical guidance for future experiments to explore low-dimensional spintronic materials.
      通信作者: 谢泉, qxie@gzu.edu.cn
    • 基金项目: 贵州大学智能制造产教融合创新平台及研究生联合培养基地(批准号: 2020-520000-83-01-324061)、国家自然科学基金(批准号: 61264004)和贵州省高层次创新型人才培养项目(黔科合人才(2015)4015)资助的课题.
      Corresponding author: Xie Quan, qxie@gzu.edu.cn
    • Funds: Project supported by the Industry and Education Combination Innovation Platform of Intelligent Manufacturing and Graduate Joint Training Base at Guizhou University (Grant No. 2020-520000-83-01-324061), the National Natural Science Foundation of China (Grant No. 61264004), and High-level Creative Talent Training Program in Guizhou Province of China (Grant No. [2015]4015).
    [1]

    Žutić I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323Google Scholar

    [2]

    De Groot R, Mueller F, van Engen P, Buschow K 1983 Phys. Rev. Lett. 50 2024Google Scholar

    [3]

    何聪丽, 许洪军, 汤建, 王潇, 魏晋武, 申世鹏, 陈庆强, 邵启明, 于国强, 张广宇, 王守国 2021 物理学报 70 127501Google Scholar

    He C L, Xu H J, Tang J, Wang X, Wei J W, Shen S P, Chen Q Q, Shao Q M, Yu G Q, Zhang G Y Wang S G 2021 Acta Phys. Sin. 70 127501Google Scholar

    [4]

    俞洋, 张文杰, 赵婉莹, 林贤, 金钻明, 刘伟民, 马国宏 2019 物理学报 68 017201Google Scholar

    Yu Y, Zhang W J, Zhao W Y, Lin X, Jin Z M, Liu W M, Ma G H 2019 Acta Phys. Sin. 68 017201Google Scholar

    [5]

    Tiwari S K, Sahoo S, Wang N, Huczko A 2020 J. Sci.: Adv. Mater. Dev. 5 10Google Scholar

    [6]

    Shen C, Ying J, Liu L, Liu J, Li N, Wang S, Tang J, Zhao Y, Chu Y, Watanabe K 2021 Chin. Phys. Lett. 38 047301Google Scholar

    [7]

    Du J, Lyu B, Shan W, Chen J, Zhou X, Xie J, Deng A, Hu C, Liang Q, Xie G 2021 Chin. Phys. Lett. 38 056301Google Scholar

    [8]

    Zhang X, Pan G, Zhang Y, Kang J, Meng Z Y 2021 Chin. Phys. Lett. 38 077305Google Scholar

    [9]

    Fu Q, Han J, Wang X, Xu P, Yao T, Zhong J, Zhong W, Liu S, Gao T, Zhang Z 2021 Adv. Mater. 33 1907818Google Scholar

    [10]

    Liu Y, Gao Y, Zhang S, He J, Yu J, Liu Z 2019 J. Nano Res. 12 2695Google Scholar

    [11]

    Hu Z, Wu Z, Han C, He J, Ni Z, Chen W 2018 Chem. Soc. Rev. 47 3100Google Scholar

    [12]

    Luan Q, Yang C L, Wang M S, Ma X G 2017 Chin. J. Phys. 55 1930Google Scholar

    [13]

    Chen Y, Chen Y, Ning J, Chen L, Zhuang W, He L, Zhang R, Xu Y, Wang X 2020 Chin. Phys. Lett. 37 017104Google Scholar

    [14]

    Zhao Y, Liu B, Yang J, He J, Jiang J 2020 Chin. Phys. Lett. 37 088501Google Scholar

    [15]

    Zhang M L, Zou X M, Liu X Q 2020 Chin. Phys. Lett. 37 118501Google Scholar

    [16]

    Zhou S H, Zhou C W, Yang X D, Li Y, Zhong J Q, Mao H Y 2021 Chin. Phys. Lett. 38 057305Google Scholar

    [17]

    Wang Z, Qiu J J, Wang X, Zhang Z, Chen Y, Huang X, Huang W 2018 Chem. Soc. Rev. 47 6128Google Scholar

    [18]

    周倩玉, 李鑫, 刘灏, 戴三瑜, 王世锋 2021 电子元件与材料 40 10Google Scholar

    Zhou Q Y, Li X, Liu H, Dai S Y, Wang S F 2021 Electr. Comp. Mater 40 10Google Scholar

    [19]

    Rapoport L, Leshchinsky V, Lapsker I, Volovik Y, Nepomnyashchy O, Lvovsky M, Popovitz-Biro R, Feldman Y, Tenne R 2003 wear 255 785Google Scholar

    [20]

    Farkous M, Bikerouin M, Thuan D V, Benhouria Y, El-Yadri M, Feddi E, Erguig H, Dujardin F, Nguyen C V, Hieu N V 2020 Physica E 116 113799Google Scholar

    [21]

    令维军, 夏涛, 董忠, 刘勍, 路飞平, 王勇刚 2017 物理学报 66 114207Google Scholar

    Lin W J, Xia T, Dong Z, Liu Q, Lu F P, Wang Y G 2017 Acta Phys. Sin. 66 114207Google Scholar

    [22]

    Sun S, Dang J, Xie X, Yu Y, Yang L, Xiao S, Wu S, Peng K, Song F, Wang Y 2020 Chin. Phys. Lett. 37 087801Google Scholar

    [23]

    Zhang D, Cao Y, Yang Z, Wu J 2020 ACS Appl. Mater. Interfaces 12 11979Google Scholar

    [24]

    Zhou Q, Duan J, Yang X, Duan Y, Tang Q 2020 Angew. Chem. 132 22181Google Scholar

    [25]

    Kang K, Fu S, Shayan K, Anthony Y, Dadras S, Yuzan X, Kazunori F, Terrones M, Zhang W, Strauf S 2020 Nanotechnol. 32 095708Google Scholar

    [26]

    Xiao S L, Yu W Z, Gao S P 2016 Surf. Sci. 653 107Google Scholar

    [27]

    Xie L Y, Zhang J M 2017 Superlattice Microst. 112 224Google Scholar

    [28]

    Wang M M, Zhang J M, Ali A, Wei X M, Huang Y H 2021 Physica E Low Dimens. Syst. Nanostruct. 134 114917Google Scholar

    [29]

    Urbanová V, Lazar P, Antonatos N, Sofer Z k, Otyepka M, Pumera M 2020 ACS Appl. Mater. Interfaces 12 20383Google Scholar

    [30]

    Singh N, Schwingenschlögl U 2016 ACS Appl. Mater. Interfaces 8 23886Google Scholar

    [31]

    Hafner J 2008 J. Comput. Chem 29 2044Google Scholar

    [32]

    Gross E K, Dreizler R M 2013 Density Functional Theory (Vol. 337) (Springer Science & Business Media)

    [33]

    Bishal G 2019 Comput. Condens. Matter 18 e00352Google Scholar

    [34]

    Zhu Y Y, Zhang J M 2018 Superlattice Microst. 117 155Google Scholar

    [35]

    Gillan M 1989 J. Phys. Condens. Matter 1 689Google Scholar

    [36]

    Dolui K, Rungger I, Pemmaraju C D, Sanvito S 2013 Phys. Rev. B 88 075420Google Scholar

    [37]

    Yang Y, Feng Z Y, Zhang J M 2019 J. Magn. Magn. Mater. 486 165255Google Scholar

    [38]

    Zhu Y Y, Zhang J M 2017 Superlattice Microst. 112 619Google Scholar

    [39]

    Manchon A, Koo H C, Nitta J, Frolov S, Duine R 2015 Nat. Mater. 14 871Google Scholar

    [40]

    Yang G, Gao S P 2021 Nanoscale 13 17057Google Scholar

    [41]

    Qiu B, Zhao X, Hu G, Yue W, Yuan X, Ren J 2020 Physica E Low Dimens. Syst. Nanostruct. 116 113729Google Scholar

    [42]

    Shu H 2020 Mater. Sci. Eng. B 261 114672Google Scholar

    [43]

    Cong C, Shang J, Wang Y, Yu T 2018 Adv. Opt. Mater. 6 1700767Google Scholar

  • 图 1  过渡金属原子X (X = Mn, Tc, Re) 掺杂二维WS2的结构 (灰色球、紫色球和黄色球分别表示W, X和S原子) (a) 俯视图; (b) 侧视图

    Fig. 1.  Structure of transition metal atom X (X = Mn, Tc, Re) doped two-dimensional WS2 (the gray, purple, and yellow balls denote W, X and S atoms, respectively): (a) Top view; (b) side view.

    图 2  能带结构(红色表示上自旋电子能带, 蓝色表示下自旋电子能带, 绿色水平虚线代表EF为零值) (a) 二维WS2; (b) Mn掺杂; (c) Tc掺杂; (d) Re掺杂

    Fig. 2.  Energy band structures (The red lines indicate spin-up electron energy band, the blue lines indicate spin-down electron energy band, the green horizontal dashed lines represent zero value of Fermi energy level EF): (a) Two-dimensional WS2; (b) Mn doped; (c) Tc doped; (d) Re doped.

    图 3  TDOSs与 PDOSs (a) 二维WS2; (b) Mn掺杂; (c) Tc掺杂; (d) Re掺杂

    Fig. 3.  The TDOSs and PDOSs: (a) Two-dimensional WS2; (b) Mn doped; (c) Tc doped; (d) Re doped.

    图 4  未掺杂与掺杂二维WS2的光学性质 (a) 介电函数实部$ {\varepsilon }_{\text{1}}\text{(}\omega \text{)} $; (b) 介电函数虚部$ {\varepsilon }_{\text{2}}\text{(}\omega \text{)} $; (c) 折射系数$ n\text{(}\omega \text{)} $; (d) 吸收系数$ \alpha \text{(}\omega \text{)} $

    Fig. 4.  Optical properties of undoped and doped two-dimensional WS2: (a) The real part of the dielectric constant$ {\text{}\varepsilon }_{\text{1}}\text{(}\omega \text{)} $; (b) the imaginary part of the dielectric constant$ {\varepsilon }_{\text{2}}\text{(}\omega \text{)} $; (c) the refractive index $ n\text{(}\omega \text{)} $; (d) absorption coefficient$ \alpha \text{(}\omega \text{)} $.

    表 1  未掺杂、掺杂二维WS2的体系优化后的晶格常数a (a = b) 、键长dX-S 、键角θS-X-S 以及体系在S-rich和W-rich条件下的形成能Eform

    Table 1.  Optimized lattice constants a (a = b), bond lengths dX-S , bond angles θS-X-S , and formation energies Eform of the system under S-rich and W-rich conditions for the undoped and doped two-dimensional WS2 systems.

    体系类型a = bdX-SθS-X-S/(°)Eform/eV
    S-richW-rich
    未掺杂3.1822.416(dw-s)82.351(θS-W-S)
    Mn掺杂3.1732.31982.445–0.6621.810
    Tc掺杂3.1872.39882.879–1.2921.180
    Re掺杂3.1912.39982.916–0.6681.804
    下载: 导出CSV

    表 2  未掺杂与掺杂二维WS2体系的总磁矩Mtot、TM原子X的局部磁矩MX、与TM原子X最近邻S原子的局部磁矩MS以及与TM原子X最邻近W原子的局部磁矩MW

    Table 2.  Total magnetic moments Mtot, the local magnetic moments MX of TM atom X, the local magnetic moments MS of nearest S atom to TM atom X and the local magnetic moments MW of nearest W atom to TM atom X for undoped and doped two-dimensional WS2 systems.

    体系类型Mtot/$ {\text{μ}}_{\text{B}} $MX/$ {\text{μ}}_{\text{B}} $MS/$ {\text{μ}}_{\text{B}} $MW/$ {\text{μ}}_{\text{B}} $
    未掺杂
    Mn掺杂1.0011.0870.0060.010
    Tc掺杂
    Re掺杂
    下载: 导出CSV

    表 3  自旋向上通道的带隙$ {E}_{\text{g}}^{\uparrow } $、自旋向下通道的带隙$ {E}_{\text{g}}^{\downarrow } $、体系的磁特性以及导电特性

    Table 3.  Band gaps in the spin-up channel $ {E}_{\text{g}}^{\uparrow } $, spin-down channel $ {E}_{\text{g}}^{\downarrow } $, the magnetic and electronic properties.

    体系类型$ {E}_{\text{g}}^{\uparrow } $/eV$ {E}_{\text{g}}^{\downarrow } $/eV磁特性导电特性
    未掺杂1.8131.813非磁性半导体
    Mn掺杂0.0181.125磁性半金属
    Tc掺杂1.4161.416非磁性N型半导体
    Re掺杂1.5161.516非磁性N型半导体
    下载: 导出CSV
  • [1]

    Žutić I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323Google Scholar

    [2]

    De Groot R, Mueller F, van Engen P, Buschow K 1983 Phys. Rev. Lett. 50 2024Google Scholar

    [3]

    何聪丽, 许洪军, 汤建, 王潇, 魏晋武, 申世鹏, 陈庆强, 邵启明, 于国强, 张广宇, 王守国 2021 物理学报 70 127501Google Scholar

    He C L, Xu H J, Tang J, Wang X, Wei J W, Shen S P, Chen Q Q, Shao Q M, Yu G Q, Zhang G Y Wang S G 2021 Acta Phys. Sin. 70 127501Google Scholar

    [4]

    俞洋, 张文杰, 赵婉莹, 林贤, 金钻明, 刘伟民, 马国宏 2019 物理学报 68 017201Google Scholar

    Yu Y, Zhang W J, Zhao W Y, Lin X, Jin Z M, Liu W M, Ma G H 2019 Acta Phys. Sin. 68 017201Google Scholar

    [5]

    Tiwari S K, Sahoo S, Wang N, Huczko A 2020 J. Sci.: Adv. Mater. Dev. 5 10Google Scholar

    [6]

    Shen C, Ying J, Liu L, Liu J, Li N, Wang S, Tang J, Zhao Y, Chu Y, Watanabe K 2021 Chin. Phys. Lett. 38 047301Google Scholar

    [7]

    Du J, Lyu B, Shan W, Chen J, Zhou X, Xie J, Deng A, Hu C, Liang Q, Xie G 2021 Chin. Phys. Lett. 38 056301Google Scholar

    [8]

    Zhang X, Pan G, Zhang Y, Kang J, Meng Z Y 2021 Chin. Phys. Lett. 38 077305Google Scholar

    [9]

    Fu Q, Han J, Wang X, Xu P, Yao T, Zhong J, Zhong W, Liu S, Gao T, Zhang Z 2021 Adv. Mater. 33 1907818Google Scholar

    [10]

    Liu Y, Gao Y, Zhang S, He J, Yu J, Liu Z 2019 J. Nano Res. 12 2695Google Scholar

    [11]

    Hu Z, Wu Z, Han C, He J, Ni Z, Chen W 2018 Chem. Soc. Rev. 47 3100Google Scholar

    [12]

    Luan Q, Yang C L, Wang M S, Ma X G 2017 Chin. J. Phys. 55 1930Google Scholar

    [13]

    Chen Y, Chen Y, Ning J, Chen L, Zhuang W, He L, Zhang R, Xu Y, Wang X 2020 Chin. Phys. Lett. 37 017104Google Scholar

    [14]

    Zhao Y, Liu B, Yang J, He J, Jiang J 2020 Chin. Phys. Lett. 37 088501Google Scholar

    [15]

    Zhang M L, Zou X M, Liu X Q 2020 Chin. Phys. Lett. 37 118501Google Scholar

    [16]

    Zhou S H, Zhou C W, Yang X D, Li Y, Zhong J Q, Mao H Y 2021 Chin. Phys. Lett. 38 057305Google Scholar

    [17]

    Wang Z, Qiu J J, Wang X, Zhang Z, Chen Y, Huang X, Huang W 2018 Chem. Soc. Rev. 47 6128Google Scholar

    [18]

    周倩玉, 李鑫, 刘灏, 戴三瑜, 王世锋 2021 电子元件与材料 40 10Google Scholar

    Zhou Q Y, Li X, Liu H, Dai S Y, Wang S F 2021 Electr. Comp. Mater 40 10Google Scholar

    [19]

    Rapoport L, Leshchinsky V, Lapsker I, Volovik Y, Nepomnyashchy O, Lvovsky M, Popovitz-Biro R, Feldman Y, Tenne R 2003 wear 255 785Google Scholar

    [20]

    Farkous M, Bikerouin M, Thuan D V, Benhouria Y, El-Yadri M, Feddi E, Erguig H, Dujardin F, Nguyen C V, Hieu N V 2020 Physica E 116 113799Google Scholar

    [21]

    令维军, 夏涛, 董忠, 刘勍, 路飞平, 王勇刚 2017 物理学报 66 114207Google Scholar

    Lin W J, Xia T, Dong Z, Liu Q, Lu F P, Wang Y G 2017 Acta Phys. Sin. 66 114207Google Scholar

    [22]

    Sun S, Dang J, Xie X, Yu Y, Yang L, Xiao S, Wu S, Peng K, Song F, Wang Y 2020 Chin. Phys. Lett. 37 087801Google Scholar

    [23]

    Zhang D, Cao Y, Yang Z, Wu J 2020 ACS Appl. Mater. Interfaces 12 11979Google Scholar

    [24]

    Zhou Q, Duan J, Yang X, Duan Y, Tang Q 2020 Angew. Chem. 132 22181Google Scholar

    [25]

    Kang K, Fu S, Shayan K, Anthony Y, Dadras S, Yuzan X, Kazunori F, Terrones M, Zhang W, Strauf S 2020 Nanotechnol. 32 095708Google Scholar

    [26]

    Xiao S L, Yu W Z, Gao S P 2016 Surf. Sci. 653 107Google Scholar

    [27]

    Xie L Y, Zhang J M 2017 Superlattice Microst. 112 224Google Scholar

    [28]

    Wang M M, Zhang J M, Ali A, Wei X M, Huang Y H 2021 Physica E Low Dimens. Syst. Nanostruct. 134 114917Google Scholar

    [29]

    Urbanová V, Lazar P, Antonatos N, Sofer Z k, Otyepka M, Pumera M 2020 ACS Appl. Mater. Interfaces 12 20383Google Scholar

    [30]

    Singh N, Schwingenschlögl U 2016 ACS Appl. Mater. Interfaces 8 23886Google Scholar

    [31]

    Hafner J 2008 J. Comput. Chem 29 2044Google Scholar

    [32]

    Gross E K, Dreizler R M 2013 Density Functional Theory (Vol. 337) (Springer Science & Business Media)

    [33]

    Bishal G 2019 Comput. Condens. Matter 18 e00352Google Scholar

    [34]

    Zhu Y Y, Zhang J M 2018 Superlattice Microst. 117 155Google Scholar

    [35]

    Gillan M 1989 J. Phys. Condens. Matter 1 689Google Scholar

    [36]

    Dolui K, Rungger I, Pemmaraju C D, Sanvito S 2013 Phys. Rev. B 88 075420Google Scholar

    [37]

    Yang Y, Feng Z Y, Zhang J M 2019 J. Magn. Magn. Mater. 486 165255Google Scholar

    [38]

    Zhu Y Y, Zhang J M 2017 Superlattice Microst. 112 619Google Scholar

    [39]

    Manchon A, Koo H C, Nitta J, Frolov S, Duine R 2015 Nat. Mater. 14 871Google Scholar

    [40]

    Yang G, Gao S P 2021 Nanoscale 13 17057Google Scholar

    [41]

    Qiu B, Zhao X, Hu G, Yue W, Yuan X, Ren J 2020 Physica E Low Dimens. Syst. Nanostruct. 116 113729Google Scholar

    [42]

    Shu H 2020 Mater. Sci. Eng. B 261 114672Google Scholar

    [43]

    Cong C, Shang J, Wang Y, Yu T 2018 Adv. Opt. Mater. 6 1700767Google Scholar

  • [1] 潘凤春, 林雪玲, 王旭明. 应变对(Ga, Mo)Sb磁学和光学性质影响的理论研究. 物理学报, 2022, 71(9): 096103. doi: 10.7498/aps.71.20212316
    [2] 宋蕊, 王必利, 冯凯, 姚佳, 李霞. 应力调控对单层TiOCl2电子结构及光学性质的影响. 物理学报, 2022, 71(7): 077101. doi: 10.7498/aps.71.20212023
    [3] 邢海英, 郑智健, 张子涵, 吴文静, 郭志英. 应力调控BlueP/X Te2 (X = Mo, W)范德瓦耳斯异质结电子结构及光学性质理论研究. 物理学报, 2021, 70(6): 067101. doi: 10.7498/aps.70.20201728
    [4] 王丹, 邱荣, 陈博, 包南云, 康冬冬, 戴佳钰. 二维冰相I的电子和光学性质. 物理学报, 2021, 70(13): 133101. doi: 10.7498/aps.70.20210708
    [5] 叶建峰, 秦铭哲, 肖清泉, 王傲霜, 何安娜, 谢泉. Ti, V, Co, Ni掺杂二维CrSi2材料的电学、磁学及光学性质的第一性原理研究. 物理学报, 2021, 70(22): 227301. doi: 10.7498/aps.70.20211023
    [6] 熊子谦, 张鹏程, 康文斌, 方文玉. 一种新型二维TiO2的电子结构与光催化性质. 物理学报, 2020, 69(16): 166301. doi: 10.7498/aps.69.20200631
    [7] 谢知, 程文旦. TiO2纳米管电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [8] 程旭东, 吴海信, 唐小路, 王振友, 肖瑞春, 黄昌保, 倪友保. Na2Ge2Se5电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [9] 李建华, 崔元顺, 曾祥华, 陈贵宾. ZnS结构相变、电子结构和光学性质的研究. 物理学报, 2013, 62(7): 077102. doi: 10.7498/aps.62.077102
    [10] 焦照勇, 郭永亮, 牛毅君, 张现周. 缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [11] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究. 物理学报, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [12] 张小超, 赵丽军, 樊彩梅, 梁镇海, 韩培德. 过渡金属(Fe,Co,Ni,Zn)掺杂金红石TiO2的电子结构和光学性质. 物理学报, 2012, 61(7): 077101. doi: 10.7498/aps.61.077101
    [13] 吴海平, 陈栋国, 黄德财, 邓开明. SrCoO3电子结构和磁学性质的第一性原理研究. 物理学报, 2012, 61(3): 037101. doi: 10.7498/aps.61.037101
    [14] 陈海川, 杨利君. LiGaX2(X=S, Se, Te)的电子结构,光学和弹性性质的第一性原理计算. 物理学报, 2011, 60(1): 014207. doi: 10.7498/aps.60.014207
    [15] 王江龙, 葛志启, 李慧玲, 刘洪飞, 于威. 后钙钛矿CaRhO3的电子结构和磁学性质的第一性原理研究. 物理学报, 2011, 60(4): 047107. doi: 10.7498/aps.60.047107
    [16] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [17] 李沛娟, 周薇薇, 唐元昊, 张华, 施思齐. CeO2的电子结构,光学和晶格动力学性质:第一性原理研究. 物理学报, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [18] 陈秋云, 赖新春, 王小英, 张永彬, 谭世勇. UO2的电子结构及光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4945-4949. doi: 10.7498/aps.59.4945
    [19] 崔冬萌, 谢泉, 陈茜, 赵凤娟, 李旭珍. Si基外延Ru2Si3电子结构及光学性质研究. 物理学报, 2010, 59(3): 2027-2032. doi: 10.7498/aps.59.2027
    [20] 李旭珍, 谢泉, 陈茜, 赵凤娟, 崔冬萌. OsSi2电子结构和光学性质的研究. 物理学报, 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
计量
  • 文章访问数:  5732
  • PDF下载量:  289
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-30
  • 修回日期:  2022-02-04
  • 上网日期:  2022-06-10
  • 刊出日期:  2022-06-20

/

返回文章
返回