-
为了研究离子注入对外延磁性薄膜面内磁各向异性的影响, 用离子加速器对在有错切角的Si(111)面上外延生长的Fe膜进行了N+注入实验. 随着N+注入剂量的增加, 外延生长的Fe膜的面内磁各向异性逐渐从二重对称改变为六重对称. 通过透射电子显微镜和刻蚀实验验证, 发现离子辐照改变了Fe膜表面和界面的状态. 未辐照Fe膜面内二重磁对称来自于由于Si(111)面的错切使得在薄膜界面和表面处形成的原子台阶. N+注入的溅射作用使得Fe膜表面的原子台阶被擦除, N+注入使得缓冲层和Fe膜界面处相互扩散导致界面处原子台阶消失. 因此, 外延Fe膜在大剂量N+注入后表现出Fe(111)面诱导的六重磁对称. 研究结果对于提高面内磁记录密度有潜在的应用价值.In order to study the effect of ion implantation on the in-plane magnetic anisotropy of epitaxial magnetic films, a 3-nm Al buffer layer is epitaxially grown on an Si (111) substrate with a miscut angle, and then 25-nm Fe is grown on the buffer layer. High-resolution X-ray diffraction reveals that the epitaxial Fe film has a (111)-oriented bcc structure. The epitaxial Fe films are implanted by 10 keV N+ ions with dose up to 5 × 1016 ions/cm2. The change and mechanism of the in-plane magnetic anisotropy of the epitaxial Fe film are studied systematically. It is found that the in-plane magnetic anisotropy of the epitaxial Fe film is gradually changed from two-fold to six-fold symmetry with the increase of N+ implantation dose. It is confirmed by transmission electron microscopy and etching experiments that ion implantation changes the surface and interface state of Fe film. This result is consistent with the result from the SRIM software simulation. The in-plane magnetic uniaxial anisotropy of epitaxial Fe film comes from atomic steps at the surface and the interface of the Fe film. These steps result from Si (111) substrate with a miscut angle. Ion implantation has effects on sputtering and atomic diffusion. The sputtering effect causes the step at the surface of the Fe film to be erased, and the diffusion of the atom leads the step at the interface of the Fe film to disappear. The in-plane uniaxial anisotropy induced by the atomic step is weakened, and the magnetocrystalline anisotropy induced by the Fe (111) plane is dominant. Therefore, the epitaxial Fe film exhibits Fe (111) plane induced six-fold magnetic symmetry after high-dose N+ implantation. This work indicates that the in-plane magnetic anisotropy of Fe films epitaxially grown on Si (111) substrate with miscut angle can be modified and precisely controlled by ion implantation. This work may be of practical significance for improving the density of in-plane magnetic recording material.
-
Keywords:
- epitaxial Fe films /
- ion implantation /
- magnetic anisotropy
[1] 杨丽 2010 博士学位论文 (哈尔滨: 哈尔滨工业大学)
Yang L 2010 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)
[2] Chen C H, Talnagi J W, Liu L F, Vora P, Higgins A, Liu S 2005 IEEE Trans. Magn. 41 3832Google Scholar
[3] 李哲夫, 贾彦彦, 刘仁多, 徐玉海, 王光宏, 夏晓彬, 沈卫祖 2018 物理学报 67 016104Google Scholar
Li Z F, Jia Y Y, Liu R D, Xu Y H, Wang G H, Xia X B, Shen W Z 2018 Acta Phys. Sin. 67 016104Google Scholar
[4] Maziewski A, Mazalski P, Kurant Z, Liedke M O, Mccord J, Fassbender J, Ferré J, Mougin A, Wawro A, Baczewski L T 2012 Phys. Rev. B 85 054427Google Scholar
[5] 丁斌峰, 相凤华, 王立明, 王洪涛 2012 物理学报 61 046105Google Scholar
Ding B F, Xiang F H, Wang L M, Wang H T 2012 Acta Phys. Sin. 61 046105Google Scholar
[6] Bali R, Wintz S, Meutzner F, Hübner R, Boucher R, Ünal A A, Valencia S, Neudert A, Potzger K, Bauch J 2014 Nano Lett. 14 435Google Scholar
[7] Jaafar M, Sanz R, Mccord J, Jensen J, Schäfer R, Vázquez M, Asenjo A 2011 Phys. Rev. B 83 094422Google Scholar
[8] McCord J, Schultz L, Fassbender J 2008 Adv. Mater. 20 2090Google Scholar
[9] Kasiuk J, Fedotova J, Przewoźnik J, Kapusta C, Skuratov V, Svito I, Bondariev V, Kołtunowicz T 2017 Acta Phys. Pol. 132 206Google Scholar
[10] Sakamaki M, Amemiya K, Liedke M, Fassbender J, Mazalski P, Sveklo I, Maziewski A 2012 Phys. Rev. B 86 024418Google Scholar
[11] Shin S C, Kim S, Han J, Hong J, Kang S 2011 Appl. Phys. Express 4 116501Google Scholar
[12] Beaujour J M, Kent A D, Ravelosona D, Tudosa I, Fullerton E E 2011 J. Appl. Phys. 109 033917Google Scholar
[13] Mccord J, Gemming T, Schultz L, Fassbender J, Liedke M O, Frommberger M, Quandt E 2005 Appl. Phys. Lett. 86 162502Google Scholar
[14] Woods S, Ingvarsson S, Kirtley J, Hamann H, Koch R 2002 Appl. Phys. Lett. 81 1267Google Scholar
[15] Fassbender J, von Borany J, Mücklich A, Potzger K, Möller W, McCord J, Schultz L, Mattheis R 2006 Phys. Rev. B 73 184410Google Scholar
[16] Jaworowicz J, Maziewski A, Mazalski P, Kisielewski M, Sveklo I, Tekielak M, Zablotskii V, Ferré J, Vernier N, Mougin A 2009 Appl. Phys. Lett. 95 022502Google Scholar
[17] Wei Y P, Gao C X, Dong C H, Ma Z K, Li J G, Xue D S 2014 Appl. Surf. Sci. 293 71Google Scholar
[18] Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Meth. Phys. Res. B 268 1818Google Scholar
[19] Ye J, He W, Wu Q, Liu H L, Zhang X Q, Chen Z Y, Cheng Z H 2013 Sci. Rep. 3 2148Google Scholar
[20] Liu H L, He W, Wu Q, Zhang X Q, Yang H T, Cheng Z H 2012 J. Appl. Phys. 112 093916Google Scholar
[21] Rezende S M, Moura J, de Aguiar F, Schreiner W H 1994 Phys. Res. B 49 15105Google Scholar
[22] Men F K, Liu F, Wang P J, Chen C H, Cheng D L, Lin J L, Himpsel F J 2002 Phys. Rev. Lett. 88 096105Google Scholar
[23] Viernow J, Lin J L, Petrovykh D, Leibsle F, Men F, Himpsel F 1998 Appl. Phys. Lett. 72 948Google Scholar
[24] Kirakosian A, Bennewitz R, Crain J N, Fauster T, Lin J L, Petrovykh D Y, Himpsel F J 2001 Appl. Phys. Lett. 79 1608Google Scholar
[25] Wu Q, He W, Liu H L, Ye J, Zhang X Q, Yang H T, Chen Z Y, Cheng Z H 2013 Sci. Rep. 3 1547Google Scholar
[26] 黎振, 徐超辉, 王群, 付翔 2013 电子工业专用设备 42 4Google Scholar
Li Z, Xu C H, Wang Q, Fu X 2013 Equipment for Electronic Products Manufacturing 42 4Google Scholar
[27] Dos S M C, Geshev J, Schmidt J E, Teixeira S R, Pereira L G 2000 Phys. Res. B 61 1311Google Scholar
[28] 李华, 郭党委 2015 实验技术与管理 32 51Google Scholar
Li H, Guo D W 2015 Experimental Technology and Management 32 51Google Scholar
-
图 4 不同剂量离子注入样品的切面高分辨TEM (a) 未注入样品; (b) 辐照剂量为5 × 1015 ions/cm2; (c) 辐照剂量为5 × 1016 ions/cm2
Fig. 4. Cross-sectional TEM images for the as-deposited and implanted samples with a series of different N+ dose: (a) The as-deposited samples; (b) the irradiated samples dose of 5 × 1015 ions/cm2; (c) the irradiated samples dose of 5 × 1016 ions/cm2.
-
[1] 杨丽 2010 博士学位论文 (哈尔滨: 哈尔滨工业大学)
Yang L 2010 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)
[2] Chen C H, Talnagi J W, Liu L F, Vora P, Higgins A, Liu S 2005 IEEE Trans. Magn. 41 3832Google Scholar
[3] 李哲夫, 贾彦彦, 刘仁多, 徐玉海, 王光宏, 夏晓彬, 沈卫祖 2018 物理学报 67 016104Google Scholar
Li Z F, Jia Y Y, Liu R D, Xu Y H, Wang G H, Xia X B, Shen W Z 2018 Acta Phys. Sin. 67 016104Google Scholar
[4] Maziewski A, Mazalski P, Kurant Z, Liedke M O, Mccord J, Fassbender J, Ferré J, Mougin A, Wawro A, Baczewski L T 2012 Phys. Rev. B 85 054427Google Scholar
[5] 丁斌峰, 相凤华, 王立明, 王洪涛 2012 物理学报 61 046105Google Scholar
Ding B F, Xiang F H, Wang L M, Wang H T 2012 Acta Phys. Sin. 61 046105Google Scholar
[6] Bali R, Wintz S, Meutzner F, Hübner R, Boucher R, Ünal A A, Valencia S, Neudert A, Potzger K, Bauch J 2014 Nano Lett. 14 435Google Scholar
[7] Jaafar M, Sanz R, Mccord J, Jensen J, Schäfer R, Vázquez M, Asenjo A 2011 Phys. Rev. B 83 094422Google Scholar
[8] McCord J, Schultz L, Fassbender J 2008 Adv. Mater. 20 2090Google Scholar
[9] Kasiuk J, Fedotova J, Przewoźnik J, Kapusta C, Skuratov V, Svito I, Bondariev V, Kołtunowicz T 2017 Acta Phys. Pol. 132 206Google Scholar
[10] Sakamaki M, Amemiya K, Liedke M, Fassbender J, Mazalski P, Sveklo I, Maziewski A 2012 Phys. Rev. B 86 024418Google Scholar
[11] Shin S C, Kim S, Han J, Hong J, Kang S 2011 Appl. Phys. Express 4 116501Google Scholar
[12] Beaujour J M, Kent A D, Ravelosona D, Tudosa I, Fullerton E E 2011 J. Appl. Phys. 109 033917Google Scholar
[13] Mccord J, Gemming T, Schultz L, Fassbender J, Liedke M O, Frommberger M, Quandt E 2005 Appl. Phys. Lett. 86 162502Google Scholar
[14] Woods S, Ingvarsson S, Kirtley J, Hamann H, Koch R 2002 Appl. Phys. Lett. 81 1267Google Scholar
[15] Fassbender J, von Borany J, Mücklich A, Potzger K, Möller W, McCord J, Schultz L, Mattheis R 2006 Phys. Rev. B 73 184410Google Scholar
[16] Jaworowicz J, Maziewski A, Mazalski P, Kisielewski M, Sveklo I, Tekielak M, Zablotskii V, Ferré J, Vernier N, Mougin A 2009 Appl. Phys. Lett. 95 022502Google Scholar
[17] Wei Y P, Gao C X, Dong C H, Ma Z K, Li J G, Xue D S 2014 Appl. Surf. Sci. 293 71Google Scholar
[18] Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Meth. Phys. Res. B 268 1818Google Scholar
[19] Ye J, He W, Wu Q, Liu H L, Zhang X Q, Chen Z Y, Cheng Z H 2013 Sci. Rep. 3 2148Google Scholar
[20] Liu H L, He W, Wu Q, Zhang X Q, Yang H T, Cheng Z H 2012 J. Appl. Phys. 112 093916Google Scholar
[21] Rezende S M, Moura J, de Aguiar F, Schreiner W H 1994 Phys. Res. B 49 15105Google Scholar
[22] Men F K, Liu F, Wang P J, Chen C H, Cheng D L, Lin J L, Himpsel F J 2002 Phys. Rev. Lett. 88 096105Google Scholar
[23] Viernow J, Lin J L, Petrovykh D, Leibsle F, Men F, Himpsel F 1998 Appl. Phys. Lett. 72 948Google Scholar
[24] Kirakosian A, Bennewitz R, Crain J N, Fauster T, Lin J L, Petrovykh D Y, Himpsel F J 2001 Appl. Phys. Lett. 79 1608Google Scholar
[25] Wu Q, He W, Liu H L, Ye J, Zhang X Q, Yang H T, Chen Z Y, Cheng Z H 2013 Sci. Rep. 3 1547Google Scholar
[26] 黎振, 徐超辉, 王群, 付翔 2013 电子工业专用设备 42 4Google Scholar
Li Z, Xu C H, Wang Q, Fu X 2013 Equipment for Electronic Products Manufacturing 42 4Google Scholar
[27] Dos S M C, Geshev J, Schmidt J E, Teixeira S R, Pereira L G 2000 Phys. Res. B 61 1311Google Scholar
[28] 李华, 郭党委 2015 实验技术与管理 32 51Google Scholar
Li H, Guo D W 2015 Experimental Technology and Management 32 51Google Scholar
计量
- 文章访问数: 6920
- PDF下载量: 42
- 被引次数: 0