搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

方镁石高压结构预测和高温结构稳定性研究

宋婷 孙小伟 魏小平 欧阳玉花 张春林 郭鹏 赵炜

引用本文:
Citation:

方镁石高压结构预测和高温结构稳定性研究

宋婷, 孙小伟, 魏小平, 欧阳玉花, 张春林, 郭鹏, 赵炜

High-pressure structure prediction and high-temperature structural stability of periclase

Song Ting, Sun Xiao-Wei, Wei Xiao-Ping, Ouyang Yu-Hua, Zhang Chun-Lin, Guo Peng, Zhao Wei
PDF
HTML
导出引用
  • 方镁石是镁方铁矿的终端组分, 化学组成为氧化镁(MgO). 理论预测的MgO熔化线和高压下实验测量结果之间存在巨大的分歧, 为澄清歧见人们展开了对MgO高压结构的进一步研究, 方镁石MgO高压结构预测及温度对结构稳定性的影响一直是高压凝聚态物理和地球物理领域的重要研究内容. 本文利用基于密度泛函理论的第一性原理计算方法, 对MgO实验结构、各种可能存在的结构及基于粒子群优化算法预测的晶体结构进行了系统深入的研究, 发现MgO在0—580 GPa的压力范围内一直以稳定岩盐结构存在, 580—800 GPa压力范围内的稳定结构为氯化铯结构. 尽管NiAs六角密堆结构和纤锌矿结构能合理解释冲击压缩实验中沿MgO的P-V雨贡纽线在(170 ± 10) GPa存在体积不连续的原因(Zhang L, Fei Y W 2008 Geophys. Res. Lett. 35 L13302)和高压下理论计算的熔化线与实验结果相差很大的原因(Aguado A, Madden P A 2005 Phys. Rev. Lett. 94 068501), 但这两种结构连同闪锌矿结构及基于粒子群优化算法预测的晶体结构B82P3m1仅为其亚稳结构. 在MgO高压结构稳定性预测的基础上, 本文利用经典分子动力学方法, 分别引入能很好描述离子极化特性的壳层模型和离子压缩效应的呼吸壳层模型, 对MgO岩盐结构的高温稳定性进行了模拟研究, 给出了压力达150 GPa的高压熔化相图.
    Periclase is the terminal component of the ferropericlase, and its chemical composition is MgO. It is well known that there exists a huge difference between the melting curves of MgO determined experimentally and theoretically. A feasible way to clarify the nature of the melting temperature is to investigate the possible new phase of MgO. Meanwhile, it is very important to study the new phase and the influence of temperature on structural stability of MgO in high-pressure condensed matter physics and geophysics. In the present work, we study in detail the phase stability and the possible existing structures of MgO, which include the structure predicted by particle swarm optimization algorithm through using the first-principles pseudopotential density functional method. We find that MgO crystallizes into a rocksalt structure in a pressure range from 0 to 580 GPa and that the CsCl-type structure is of a high-pressure phase at up to 800 GPa. Although an NiAs-type hexagonal phase perhaps explains the volume discontinuity at (170 ± 10) GPa along the MgO Hugoniot in a shock-compression experiment (Zhang L, Fei Y W 2008 Geophys. Res. Lett. 35 L13302) and a wurtzite phase perhaps explains the huge difference between the melting curves of MgO determined experimentally and theoretically (Aguado A, Madden P A 2005 Phys. Rev. Lett. 94 068501), neither of them is existent in the entire range of pressures studied, according to the thermodynamic stability calculations. The calculations of phonon spectra indicate that the B3, B4, B81, B82, and P3m1 phases of MgO are dynamically stable at zero pressure. That is to say, all of the predicted structures are the metastable structures of MgO. In addition, the high-temperature structural stability of MgO is investigated by using very similar Lewis-Catlow and Stoneham-Sangster shell model potential based on the classical molecular dynamics (MD) simulations. In order to take into account the non-central force in crystal, the breathing shell model is also introduced in simulation. The thermodynamic melting curves are estimated on the basis of the thermal instability MD simulations and compared with the available experimental data and other theoretical results in the pressure range of 0-150 GPa.
      通信作者: 孙小伟, sunxw_lzjtu@yeah.net
    • 基金项目: 国家自然科学基金(批准号: 11464027, 51562021)、兰州交通大学优秀科研团队(批准号: 201803)和兰州交通大学“百名青年优秀人才培养计划”资助的课题.
      Corresponding author: Sun Xiao-Wei, sunxw_lzjtu@yeah.net
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11464027, 51562021), the Excellent Research Team of Lanzhou Jiaotong University, China (Grant No. 201803), and the Foundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University, China.
    [1]

    Wood B J, Nell J 1991 Nature 351 309Google Scholar

    [2]

    Fei Y W 1999 Am. Meniral. 84 272

    [3]

    Zhang L, Fei Y W 2008 Geophys. Res. Lett. 35 L13302Google Scholar

    [4]

    Francis M F, Taylor C D 2013 Phys. Rev. B 87 075450Google Scholar

    [5]

    Hong N V, Lan M T, Hung P K 2012 High Pressure Res. 32 509Google Scholar

    [6]

    Aguado A, Madden P A 2005 Phys. Rev. Lett. 94 068501Google Scholar

    [7]

    Yan Q, Rinke P, Winkelnkemper M, Qteish A, Bimberg D, Scheffler M, van de Walle C G 2012 Appl. Phys. Lett. 101 152105Google Scholar

    [8]

    Joshi K, Sharma B, Paliwal U, Barbiellini B 2012 J. Mater. Sci. 47 7549Google Scholar

    [9]

    Duffy T S, Hemley R J, Mao H K 1995 Phys. Rev. Lett. 74 1371Google Scholar

    [10]

    Song T, Sun X W, Liu Z J, Kong B, Quan W L, Fu Z J, Li J F, Tian J H 2012 Phys. Scr. 85 045702Google Scholar

    [11]

    Sims C E, Barrera G D, Allan N L, Mackrodt W C 1998 Phys. Rev. B 57 11164Google Scholar

    [12]

    Oganov A R, Gillan M J, Price G D 2003 J. Chem. Phys. 118 10174Google Scholar

    [13]

    Zerr A, Boehler R 1994 Nature 371 506Google Scholar

    [14]

    Anderson O L, Duba A 1997 J. Geophys. Res. 102 22659Google Scholar

    [15]

    Sun X W, Chen Q F, Chu Y D, Wang C W 2005 Physica B 370 186Google Scholar

    [16]

    Dubrovinsky L, Dubrovinskaia N, Prakapenka V B, Abakumov A M 2012 Nature Communs. 3 1163Google Scholar

    [17]

    Wang Y C, Lü J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116Google Scholar

    [18]

    Lü J, Wang Y C, Zhu L, Ma Y M 2011 Phys. Rev. Lett. 106 015503Google Scholar

    [19]

    Li Y, Hao J, Liu H, Li Y, Ma Y 2014 J. Chem. Phys. 140 174712Google Scholar

    [20]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73Google Scholar

    [21]

    Peng F, Sun Y, Pickard C J, Needs R J, Wu Q, Ma Y 2017 Phys. Rev. Lett. 119 107001Google Scholar

    [22]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [25]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [26]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 Phys. Condens. Matter. 14 2717Google Scholar

    [27]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [28]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [29]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768Google Scholar

    [30]

    Gonze X, Lee C 1997 Phys. Rev B. 55 10355Google Scholar

    [31]

    Fincham D 1992 Mol. Sim. 8 165Google Scholar

    [32]

    Dick B G, Overhauser A W 1958 Phys. Rev. 112 90Google Scholar

    [33]

    Lewis G V, Catlow C R A 1985 J. Phys. C: Solid State Phys. 18 1149Google Scholar

    [34]

    Stoneham A M, Sangster M J L 1985 Phil. Mag. B 52 717Google Scholar

    [35]

    Catlow C R A, Faux I D, Norgett M J 1976 J. Phys. C: Solid State Phys. 9 419

    [36]

    Henkelman G, Uberuaga B P, Harris D J, Harding J H, Allan N L 2005 Phys. Rev. B 72 115437Google Scholar

    [37]

    Mao H K, Bell P M 1979 J. Geophys. Res. 84 4533Google Scholar

    [38]

    Song T, Sun X W, Wang R F, Lu H W, Tian J H 2011 Physica B 406 293Google Scholar

    [39]

    Sun X W, Song T, Chu Y D, Liu Z J, Zhang Z R, Chen Q F 2010 Solid State Commun. 150 1785Google Scholar

    [40]

    Jeanloz R, Ahrens T J, Mao H K, Bell P M 1979 Science 206 829Google Scholar

    [41]

    Phillips J C 1971 Phys. Rev. Lett. 27 1197Google Scholar

    [42]

    van Camp P E, van Doren V E 1996 J. Phys.: Condens. Matter 8 3385Google Scholar

    [43]

    Cai Y X, Wu S T, Xu R, Yu J 2006 Phys. Rev. B 73 184104Google Scholar

    [44]

    Luo F, Cheng Y, Cai L C, Chen X R 2013 J. Appl. Phys. 113 033517Google Scholar

    [45]

    Speziale S, Zha C S, Duffy T S, Hemley R J, Mao H K 2001 J. Geophys. Res. 106 515Google Scholar

    [46]

    Lu K, Li Y 1998 Phys. Rev. Lett. 80 4474Google Scholar

    [47]

    Riley B 1966 Rev. Int. Hautes Temp. Refract. 3 327

    [48]

    Tallon J L 1989 Nature 342 658Google Scholar

    [49]

    Belonoshko A B, Dubrovinsky L S 1996 Am. Mineral. 81 303Google Scholar

    [50]

    Wang Z, Tutti F, Saxena S K 2001 High Temp.-High Press. 33 357Google Scholar

    [51]

    Lindemann F A 1910 Z. Phys. 11 609

    [52]

    Luo S N, Strachan A, Swift D C 2004 J. Chem. Phys. 120 11640Google Scholar

  • 图 1  模拟得到的零温下MgO岩盐结构的体积比率随压力的变化及和实验结果的比较

    Fig. 1.  Volume ratios of MgO with NaCl-type structure under pressures at zero temperature, in comparison with the experimental data.

    图 2  MgO晶体的可能结构(其中大球代表Mg原子, 小球代表O原子) (a) B1; (b) B2; (c) B3; (d) B4; (e) B81; (f) B82; (g) P3m1

    Fig. 2.  Probable crystal structures of MgO (the large and small spheres represent magnesium and oxygen atoms, respectively): (a) B1; (b) B2; (c) B3; (d) B4; (e) B81; (f) B82; (g) P3m1.

    图 3  计算得到的MgO晶体在零温下的B1, B2, B3, B4, B81, B82P3m1各可能结构的相对焓随压力的变化

    Fig. 3.  Calculated relative enthalpies of MgO with B1, B2, B3, B4, B81, B82 and P3m1 phases as a function of pressure at zero temperature.

    图 4  计算得到的MgO晶体B1 (a), B3 (b), B4 (c), B81 (d), B82 (e), P3m1 (f)和B2 (g)结构在零压下的声子谱和B2结构在相变压力为580 GPa下的声子谱(h)

    Fig. 4.  Calculated phonon spectra of MgO with B1 (a), B3 (b), B4 (c), B81 (d), B82 (e), P3m1 (f) and B2 (g) phases at 0 GPa and with B2 phase at 580 GPa (h).

    图 5  分子动力学模拟得到的零压下的MgO岩盐结构的体积随温度的变化

    Fig. 5.  Molecular dynamics calculated volume of MgO with NaCl-type structure as a function of temperature at zero pressure.

    图 6  分子动力学模拟得到的零压下的MgO岩盐结构的总能随温度的变化

    Fig. 6.  Molecular dynamics calculated total energy of MgO with NaCl-type structure as a function of temperature at zero pressure.

    图 7  分子动力学模拟得到的MgO岩盐结构压力达150 GPa的熔化相图

    Fig. 7.  Molecular dynamics calculated melting phase diagram of MgO with NaCl-type structure as a function of pressure up to 150 GPa.

    表 1  岩盐结构的MgO晶体特性模拟的短程对势参数

    Table 1.  Parameters of the short-range pair potentials for simulation of MgO crystal properties with NaCl-type structure.

    ParameterSM-SSSM-LCBSMBG
    Mg-OAij/eV1346.6821.61822.0929.69
    ρij0.29840.32430.324480.29909
    Cij/eV·Å60.00.00.00.0
    O-OAij/eV22764.422764.417.225564870.0
    ρij0.1490.1490.656640.267
    Cij/eV·Å620.3720.371.1×10–777.0
    下载: 导出CSV

    表 2  岩盐结构的MgO晶体特性模拟的壳层及呼吸壳层参数

    Table 2.  Shell and breathing shell parameters of MgO crystal characteristic simulation with NaCl-type structure.

    ParameterSM-SSSM-LCBSM
    Y/ |e|–2.93452.0000–3.42274
    k/ eV·Å–251.7115.74113.58
    K/ eV·Å–2298.304
    下载: 导出CSV
  • [1]

    Wood B J, Nell J 1991 Nature 351 309Google Scholar

    [2]

    Fei Y W 1999 Am. Meniral. 84 272

    [3]

    Zhang L, Fei Y W 2008 Geophys. Res. Lett. 35 L13302Google Scholar

    [4]

    Francis M F, Taylor C D 2013 Phys. Rev. B 87 075450Google Scholar

    [5]

    Hong N V, Lan M T, Hung P K 2012 High Pressure Res. 32 509Google Scholar

    [6]

    Aguado A, Madden P A 2005 Phys. Rev. Lett. 94 068501Google Scholar

    [7]

    Yan Q, Rinke P, Winkelnkemper M, Qteish A, Bimberg D, Scheffler M, van de Walle C G 2012 Appl. Phys. Lett. 101 152105Google Scholar

    [8]

    Joshi K, Sharma B, Paliwal U, Barbiellini B 2012 J. Mater. Sci. 47 7549Google Scholar

    [9]

    Duffy T S, Hemley R J, Mao H K 1995 Phys. Rev. Lett. 74 1371Google Scholar

    [10]

    Song T, Sun X W, Liu Z J, Kong B, Quan W L, Fu Z J, Li J F, Tian J H 2012 Phys. Scr. 85 045702Google Scholar

    [11]

    Sims C E, Barrera G D, Allan N L, Mackrodt W C 1998 Phys. Rev. B 57 11164Google Scholar

    [12]

    Oganov A R, Gillan M J, Price G D 2003 J. Chem. Phys. 118 10174Google Scholar

    [13]

    Zerr A, Boehler R 1994 Nature 371 506Google Scholar

    [14]

    Anderson O L, Duba A 1997 J. Geophys. Res. 102 22659Google Scholar

    [15]

    Sun X W, Chen Q F, Chu Y D, Wang C W 2005 Physica B 370 186Google Scholar

    [16]

    Dubrovinsky L, Dubrovinskaia N, Prakapenka V B, Abakumov A M 2012 Nature Communs. 3 1163Google Scholar

    [17]

    Wang Y C, Lü J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116Google Scholar

    [18]

    Lü J, Wang Y C, Zhu L, Ma Y M 2011 Phys. Rev. Lett. 106 015503Google Scholar

    [19]

    Li Y, Hao J, Liu H, Li Y, Ma Y 2014 J. Chem. Phys. 140 174712Google Scholar

    [20]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73Google Scholar

    [21]

    Peng F, Sun Y, Pickard C J, Needs R J, Wu Q, Ma Y 2017 Phys. Rev. Lett. 119 107001Google Scholar

    [22]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [25]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [26]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 Phys. Condens. Matter. 14 2717Google Scholar

    [27]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [28]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [29]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768Google Scholar

    [30]

    Gonze X, Lee C 1997 Phys. Rev B. 55 10355Google Scholar

    [31]

    Fincham D 1992 Mol. Sim. 8 165Google Scholar

    [32]

    Dick B G, Overhauser A W 1958 Phys. Rev. 112 90Google Scholar

    [33]

    Lewis G V, Catlow C R A 1985 J. Phys. C: Solid State Phys. 18 1149Google Scholar

    [34]

    Stoneham A M, Sangster M J L 1985 Phil. Mag. B 52 717Google Scholar

    [35]

    Catlow C R A, Faux I D, Norgett M J 1976 J. Phys. C: Solid State Phys. 9 419

    [36]

    Henkelman G, Uberuaga B P, Harris D J, Harding J H, Allan N L 2005 Phys. Rev. B 72 115437Google Scholar

    [37]

    Mao H K, Bell P M 1979 J. Geophys. Res. 84 4533Google Scholar

    [38]

    Song T, Sun X W, Wang R F, Lu H W, Tian J H 2011 Physica B 406 293Google Scholar

    [39]

    Sun X W, Song T, Chu Y D, Liu Z J, Zhang Z R, Chen Q F 2010 Solid State Commun. 150 1785Google Scholar

    [40]

    Jeanloz R, Ahrens T J, Mao H K, Bell P M 1979 Science 206 829Google Scholar

    [41]

    Phillips J C 1971 Phys. Rev. Lett. 27 1197Google Scholar

    [42]

    van Camp P E, van Doren V E 1996 J. Phys.: Condens. Matter 8 3385Google Scholar

    [43]

    Cai Y X, Wu S T, Xu R, Yu J 2006 Phys. Rev. B 73 184104Google Scholar

    [44]

    Luo F, Cheng Y, Cai L C, Chen X R 2013 J. Appl. Phys. 113 033517Google Scholar

    [45]

    Speziale S, Zha C S, Duffy T S, Hemley R J, Mao H K 2001 J. Geophys. Res. 106 515Google Scholar

    [46]

    Lu K, Li Y 1998 Phys. Rev. Lett. 80 4474Google Scholar

    [47]

    Riley B 1966 Rev. Int. Hautes Temp. Refract. 3 327

    [48]

    Tallon J L 1989 Nature 342 658Google Scholar

    [49]

    Belonoshko A B, Dubrovinsky L S 1996 Am. Mineral. 81 303Google Scholar

    [50]

    Wang Z, Tutti F, Saxena S K 2001 High Temp.-High Press. 33 357Google Scholar

    [51]

    Lindemann F A 1910 Z. Phys. 11 609

    [52]

    Luo S N, Strachan A, Swift D C 2004 J. Chem. Phys. 120 11640Google Scholar

  • [1] 陈贝, 邓永和, 祁青华, 高明, 文大东, 王小云, 彭平. 高压下快凝Pd82Si18非晶合金中二十面体结构分析. 物理学报, 2024, 73(2): 026101. doi: 10.7498/aps.73.20231101
    [2] 王碧涵, 李冰, 刘旭强, 王毫, 蒋升, 林传龙, 杨文革. 毫秒时间分辨同步辐射X射线衍射和高压快速加载装置及应用. 物理学报, 2022, 71(10): 100702. doi: 10.7498/aps.71.20212360
    [3] 王春杰, 王月, 高春晓. 高压下纳米晶ZnS晶粒和晶界性质及相变机理. 物理学报, 2020, 69(14): 147202. doi: 10.7498/aps.69.20200240
    [4] 孙小伟, 宋婷, 刘子江, 万桂新, 张磊, 常文利. 氟化镁高压萤石结构稳定性及热物性的数值模拟. 物理学报, 2020, 69(15): 156202. doi: 10.7498/aps.69.20200289
    [5] 蒋元祺. 难熔金属钒熔化行为的局域原子结构模拟与分析. 物理学报, 2020, 69(20): 203601. doi: 10.7498/aps.69.20200185
    [6] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算. 物理学报, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [7] 段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田. 高压下富氢化合物的结构与奇异超导电性. 物理学报, 2017, 66(3): 036102. doi: 10.7498/aps.66.036102
    [8] 董家君, 姚明光, 刘世杰, 刘冰冰. 高压下准一维纳米结构的研究. 物理学报, 2017, 66(3): 039101. doi: 10.7498/aps.66.039101
    [9] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究. 物理学报, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [10] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算. 物理学报, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [11] 王海燕, 历长云, 高洁, 胡前库, 米国发. 高压下TiAl3结构及热动力学性质的第一性原理研究. 物理学报, 2013, 62(6): 068105. doi: 10.7498/aps.62.068105
    [12] 吴迪, 赵纪军, 田华. Fe2+取代对MgSiO3钙钛矿高温高压物性的影响. 物理学报, 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [13] 周大伟, 卢成, 李根全, 宋金璠, 宋玉玲, 包刚. 高压下金属Ba的结构稳定性以及热动力学的第一原理研究. 物理学报, 2012, 61(14): 146301. doi: 10.7498/aps.61.146301
    [14] 陈中钧. 高压下MgS的弹性性质、电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(17): 177104. doi: 10.7498/aps.61.177104
    [15] 明星, 王小兰, 杜菲, 陈岗, 王春忠, 尹建武. 菱铁矿FeCO3高压相变与性质的第一性原理研究. 物理学报, 2012, 61(9): 097102. doi: 10.7498/aps.61.097102
    [16] 王丽红, 尤静林, 王媛媛, 郑少波, 西蒙·派特里克, 侯敏, 季自方. 六方晶型MgTiO3温致微结构变化及其原位拉曼光谱研究. 物理学报, 2011, 60(10): 104209. doi: 10.7498/aps.60.104209
    [17] 卢敏, 许卫兵, 刘维清, 侯春菊, 刘志勇. 银纳米杆高温熔化断裂弛豫性能的原子级模拟研究. 物理学报, 2010, 59(9): 6377-6383. doi: 10.7498/aps.59.6377
    [18] 文玉华, 孙世刚, 张杨, 朱梓忠. 铂纳米晶在升温过程中结构演化与熔化特征的原子级模拟研究. 物理学报, 2009, 58(4): 2585-2589. doi: 10.7498/aps.58.2585
    [19] 刘建廷, 段海明. 不同势下铱团簇结构和熔化行为的分子动力学模拟. 物理学报, 2009, 58(7): 4826-4834. doi: 10.7498/aps.58.4826
    [20] 丁迎春, 徐 明, 潘洪哲, 沈益斌, 祝文军, 贺红亮. γ-Si3N4在高压下的电子结构和物理性质研究. 物理学报, 2007, 56(1): 117-122. doi: 10.7498/aps.56.117
计量
  • 文章访问数:  11105
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-16
  • 修回日期:  2019-04-08
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-20

/

返回文章
返回