搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下富氢化合物的结构与奇异超导电性

段德芳 马艳斌 邵子霁 谢慧 黄晓丽 刘冰冰 崔田

引用本文:
Citation:

高压下富氢化合物的结构与奇异超导电性

段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田

Structures and novel superconductivity of hydrogen-rich compounds under high pressures

Duan De-Fang, Ma Yan-Bin, Shao Zi-Ji, Xie Hui, Huang Xiao-Li, Liu Bing-Bing, Cui Tian
PDF
导出引用
  • 在富氢化合物中,一方面由于非氢元素的存在会对氢的子晶格产生化学预压作用,这些体系比纯氢更容易金属化.另一方面由于含氢量较多,富氢化合物可能会具有像金属氢那样较高的超导转变温度,有望成为超导家族的新成员氢基超导体.高压下富氢化合物的结构及超导电性已成为物理、材料等多学科的研究热点,最近理论和实验发现硫氢化合物在高压下的超导转变温度达到200 K,创造了高温超导新纪录,进一步推动了人们对富氢化合物超导电性的研究.本文主要介绍了近年来高压下几种典型富氢化合物的结构、稳定性、原子间相互作用、金属化及超导电性,希望未来能在富氢化合物中寻找到具有更高超导转变温度的超导体.
    Metallic hydrogen can be realized theoretically at high pressure, which suggests that it will be a room-temperature superconductor due to the high vibrational frequencies of hydrogen atoms. However, the metallic state of hydrogen is not observed in experiment at up to 388 GPa. Scientists have been exploring various new ways to achieve hydrogen metallization. Hydrogen-rich compounds can be metallized at much lower pressures because of chemical pre-compression. Moreover, because such materials are dominated by hydrogen atoms, some novel properties can be found after metallization, such as high Tc superconductivity. Therefore, hydrogen-rich compounds are potential high-temperature superconductors, and this method is also believed to be an effective way to metalize hydrogen, which has aroused significant interest in lots of fields, such as physics, material science, etc. In a word, hydrogen-rich compounds are expected to become a new member of superconductor family:hydrogen-based superconductor. Very recently, the theoretical prediction and the successful experimental discovery of high-temperature superconductivity at 200 K in a sulfur hydride compound at high pressure have set a record, which inspired further efforts to study the superconductivity of hydrogen-rich compounds. The present review focuses on crystal structures, stabilities, interaction between atoms, metallization, and superconductivity of several typical hydrogen-rich compounds at high pressures. Furthermore, higher Tc superconductors can be expected to be found in hydrogen-rich compounds in the future.
      通信作者: 崔田, cuitian@jlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51632002,11674122,51572108,11204100,11504127,11634004)和教育部长江学者和创新团队发展计划(批准号:IRT_15R23)资助的课题.
      Corresponding author: Cui Tian, cuitian@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51632002, 11674122, 51572108, 11204100, 11504127, 11634004) and the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT_15R23).
    [1]

    Mazin I I 2015 Nature 525 40

    [2]

    Bednorz J G, Mller K A 1986 Z. Physik. B 64 189

    [3]

    Zhao Z X, Chen L Q, Cui C G, Huang Y Z, Liu J X, Chen G H, Li S L, Guo S Q, He Y Y 1987 Chin. Sci. Bull. 32 177 (in Chinese)[赵忠贤, 陈立泉, 崔长庚, 黄玉珍, 刘锦湘, 陈赓华, 李山林, 郭树权, 何业冶1987科学通报32 177]

    [4]

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 32 412 (in Chinese)[赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清1987科学通报32 412]

    [5]

    Hor P H, Meng R L, Wang Y Q, Gao L, Huang Z J, Bechtold J, Forster K, Chu C W 1987 Phys. Rev. Lett. 58 1891

    [6]

    Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K 1994 Phys. Rev. B 50 4260

    [7]

    Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J 2001 Nature 410 63

    [8]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [9]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761

    [10]

    Chen G F, Li Z, Wu D, Li G, Hu W Z, Dong J, Zheng P, Luo J L, Wang N L 2008 Phys. Rev. Lett. 100 247002

    [11]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Zheng C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215

    [12]

    Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W, Cui T 2014 Sci. Rep. 4 6968

    [13]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73

    [14]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [15]

    Wigner E, Huntington H B 1935 J. Chem. Phys. 3 764

    [16]

    Ashcroft N W 1968 Phys. Rev. Lett. 21 1748

    [17]

    Dalladay-Simpson P, Howie R T, Gregoryanz E 2016 Nature 529 63

    [18]

    Ashcroft N W 2004 Phys. Rev. Lett. 92 187002

    [19]

    Allen P B, Dynes R C 1975 Phys. Rev. B 12 905

    [20]

    Duan D, Huang X, Tian F, Li D, Yu H, Liu Y, Ma Y, Liu B, Cui T 2015 Phys. Rev. B 91 180502

    [21]

    Zhang S, Wang Y, Zhang J, Liu H, Zhong X, Song H F, Yang G, Zhang L, Ma Y 2015 Sci. Rep. 5 15433

    [22]

    Hu C H, Oganov A R, Zhu Q, Qian G R, Frapper G, Lyakhov A O, Zhou H Y 2013 Phys. Rev. Lett. 110 165504

    [23]

    Strobel T A, Ganesh P, Somayazulu M, Kent P R C, Hemley R J 2011 Phys. Rev. Lett. 107 255503

    [24]

    Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets M I, Drozdov A P, Troyan I A, Hirao N, Ohishi Y 2016 Nat. Phys. 12 835

    [25]

    Troyan I, Gavriliuk A, Rffer R, Chumakov A, Mironovich A, Lyubutin I, Perekalin D, Drozdov A P, Eremets M I 2016 Science 351 1303

    [26]

    Huang X, Wang X, Duan D, Bertil. S, Xin L, Huang Y, Li F, Zhou Q, Liu B, Cui T 2016 arXiv:1610.02630[cond-mat.supr-con]

    [27]

    Li Y, Hao J, Liu H, Li Y, Ma Y 2014 J. Chem. Phys. 140 174712

    [28]

    Ishikawa T, Nakanishi A, Shimizu K, Katayama-Yoshida H, Oda T, Suzuki N 2016 Sci. Rep. 6 23160

    [29]

    Li Y, Wang L, Liu H, Zhang Y, Hao J, Pickard C J, Nelson J R, Needs R J, Li W, Huang Y, Errea I, Calandra M, Mauri F, Ma Y 2016 Phys. Rev. B 93 020103

    [30]

    Goncharov A F, Lobanov S S, Kruglov I, Zhao X M, Chen X J, Oganov A R, Konôpková Z, Prakapenka V B 2016 Phys. Rev. B 93 174105

    [31]

    Bernstein N, Hellberg C S, Johannes M D, Mazin I I, Mehl M J 2015 Phys. Rev. B 91 060511

    [32]

    Papaconstantopoulos D A, Klein B M, Mehl M J, Pickett W E 2015 Phys. Rev. B 91 184511

    [33]

    Quan Y, Pickett W E 2016 Phys. Rev. B 93 104526

    [34]

    Ge Y, Zhang F, Yao Y 2016 Phys. Rev. B 93 224513

    [35]

    Abe K, Ashcroft N W 2011 Phys. Rev. B 84 104118

    [36]

    Jin X, Meng X, He Z, Ma Y, Liu B, Cui T, Zou G, Mao H K 2010 Proc. Natl. Acad. Sci. USA 107 9969

    [37]

    Kim D Y, Scheicher R H, Ahuja R 2008 Phys. Rev. B 78 100102

    [38]

    Wang H, John S T, Tanaka K, Iitaka T, Ma Y 2012 Proc. Natl. Acad. Sci. USA 109 6463

    [39]

    Feng X, Zhang J, Gao G, Liu H, Wang H 2015 RSC Adv. 5 59292

    [40]

    Li Y, Hao J, Liu H, Tse J S, Wang Y, Ma Y 2015 Sci. Rep. 5 9948

    [41]

    Zurek E, Hoffmann R, Ashcroft N W, Oganov A R, Lyakhov A O 2009 Proc. Natl. Acad. Sci. USA 106 17640

    [42]

    Baettig P, Zurek E 2011 Phys. Rev. Lett. 106 237002

    [43]

    Hooper J, Zurek E 2012 J. Phys. Chem. C 116 13322

    [44]

    Zhou D, Jin X, Meng X, Bao G, Ma Y, Liu B, Cui T 2012 Phys. Rev. B 86 014118

    [45]

    Hooper J, Zurek E 2012 Chem. A:Europ. J. 18 5013

    [46]

    Shamp A, Hooper J, Zurek E 2012 Inorg. Chem. 51 9333

    [47]

    Lonie D C, Hooper J, Altintas B, Zurek E 2013 Phys. Rev. B 87 054107

    [48]

    Hooper J, Terpstra T, Shamp A, Zurek E 2014 J. Phys. Chem. C 118 6433

    [49]

    Wang Y, Wang H, Tse J S, Iitaka T, Ma Y 2015 Phys. Chem. Chem. Phys. 17 19379

    [50]

    Hooper J, Altintas B, Shamp A, Zurek E 2013 J. Phys. Chem. C 117 2982

    [51]

    Liu Y, Duan D, Tian F, Liu H, Wang C, Huang X, Li D, Ma Y, Liu B, Cui T 2015 Inorg. Chem. 54 9924

    [52]

    Gao G, Oganov A R, Bergara A, Martinez-Canales M, Cui T, Iitaka T, Ma Y, Zou G 2008 Phys. Rev. Lett. 101 107002

    [53]

    Tse J S, Yao Y, Tanaka K 2007 Phys. Rev. Lett. 98 117004

    [54]

    Gao G, Oganov A R, Li P, Li Z, Wang H, Cui T, Ma Y, Bergara A, Lyakhov A O, Iitaka T, Zou G 2010 Proc. Natl. Acad. Sci. USA 107 1317

    [55]

    Zaleski-Ejgierd P, Hoffmann R, Ashcroft N W 2011 Phys. Rev. Lett. 107 037002

    [56]

    Fu Y, Du X, Zhang L, Peng F, Zhang M, Pickard C J, Needs R J, Singh D J, Zheng W, Ma Y 2016 Chem. Mater. 28 1746

    [57]

    Ma Y, Duan D, Li D, Liu Y, Tian F, Huang X, Zhao Z, Yu H, Liu B, Cui T 2015 arXiv:1506.03889[cond-mat.supr-con]

    [58]

    Ma Y, Duan D, Li D, Liu Y, Tian F, Yu H, Xu C, Shao Z, Liu B, Cui T 2015 arXiv:1511.05291[cond-mat.supr-con]

    [59]

    Zhong X, Wang H, Zhang J, Liu H, Zhang S, Song H F, Yang G, Zhang L, Ma Y 2016 Phys. Rev. Lett. 116 057002

    [60]

    Liu Y, Duan D, Tian F, Wang C, Wu G, Ma Y, Yu H, Li D, Liu B, Cui T 2015 RSC Adv. 5 103445

    [61]

    Duan D, Huang X, Tian F, Liu Y, Li D, Yu H, Liu B, Tian W, Cui T 2015 J. Phys. Chem. A 119 11059

    [62]

    Duan D, Tian F, Liu Y, Huang X, Li D, Yu H, Ma Y, Liu B, Cui T 2015 Phys. Chem. Chem. Phys. 17 32335

    [63]

    Shamp A, Zurek E 2015 J. Phys. Chem. Lett. 6 4067

    [64]

    Strobel T A, Somayazulu M, Hemley R J 2009 Phys. Rev. Lett. 103 065701

    [65]

    Wang S, Mao H K, Chen X J, Mao W L 2009 Proc. Natl. Acad. Sci. USA 106 14763

    [66]

    Strobel T A, Chen X J, Somayazulu M, Hemley R J 2010 J. Chem. Phys. 133 164512

    [67]

    Chen X Q, Wang S, Mao W L, Fu C L 2010 Phys. Rev. B 82 104115

    [68]

    Michel K, Liu Y, Ozolins V 2010 Phys. Rev. B 82 174103

    [69]

    Li Y, Gao G, Li Q, Ma Y, Zou G 2010 Phys. Rev. B 82 064104

    [70]

    Yao Y, Klug D D 2010 Proc. Natl. Acad. Sci. USA 107 20893

    [71]

    Li Y, Gao G, Xie Y, Ma Y, Cui T, Zou G 2010 Proc. Natl. Acad. Sci. USA 107 15708

    [72]

    Zhong G, Zhang C, Chen X, Li Y, Zhang R, Lin H 2012 J. Phys. Chem. C 116 5225

    [73]

    Thomson J J 1911 Philos. Mag. 21 225

    [74]

    Coulson C A 1935 Math. Proc. Cambridge Philos. Soc. 31 244

    [75]

    Oka T 2013 Chem. Rev. 113 8738

    [76]

    Stärck J, Meyer W 1993 Chem. Phys. 176 83

    [77]

    Wang W, Belyaev A K, Xu Y, Zhu A, Xiao C, Yang X F 2003 Chem. Phys. Lett. 377 512

    [78]

    Golser R, Gnaser H, Kutschera W, Priller A, Steier P, Wallner A,Čížek M, Horáček J, Domcke W 2005 Phys. Rev. Lett. 94 223003

    [79]

    Duan D, Tian F, Huang X, Li D, Yu H, Liu Y, Ma Y, Liu B, Cui T 2015 arXiv:1504.01196[cond-mat.supr-con]

    [80]

    Wang Z, Wang H, Tse J S, Iitaka T, Ma Y 2015 Chem. Sci. 6 522

    [81]

    Zeng Q, Yu S, Li D, Frapperb G, Oganov A R 2015 arXiv:1508.01395[cond-mat.mtrl-sci]

    [82]

    Pickett W E 2001 Physica B 296 112

    [83]

    Mazin I I 2010 Nature 464 183

  • [1]

    Mazin I I 2015 Nature 525 40

    [2]

    Bednorz J G, Mller K A 1986 Z. Physik. B 64 189

    [3]

    Zhao Z X, Chen L Q, Cui C G, Huang Y Z, Liu J X, Chen G H, Li S L, Guo S Q, He Y Y 1987 Chin. Sci. Bull. 32 177 (in Chinese)[赵忠贤, 陈立泉, 崔长庚, 黄玉珍, 刘锦湘, 陈赓华, 李山林, 郭树权, 何业冶1987科学通报32 177]

    [4]

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 32 412 (in Chinese)[赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清1987科学通报32 412]

    [5]

    Hor P H, Meng R L, Wang Y Q, Gao L, Huang Z J, Bechtold J, Forster K, Chu C W 1987 Phys. Rev. Lett. 58 1891

    [6]

    Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K 1994 Phys. Rev. B 50 4260

    [7]

    Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J 2001 Nature 410 63

    [8]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [9]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761

    [10]

    Chen G F, Li Z, Wu D, Li G, Hu W Z, Dong J, Zheng P, Luo J L, Wang N L 2008 Phys. Rev. Lett. 100 247002

    [11]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Zheng C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215

    [12]

    Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W, Cui T 2014 Sci. Rep. 4 6968

    [13]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73

    [14]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [15]

    Wigner E, Huntington H B 1935 J. Chem. Phys. 3 764

    [16]

    Ashcroft N W 1968 Phys. Rev. Lett. 21 1748

    [17]

    Dalladay-Simpson P, Howie R T, Gregoryanz E 2016 Nature 529 63

    [18]

    Ashcroft N W 2004 Phys. Rev. Lett. 92 187002

    [19]

    Allen P B, Dynes R C 1975 Phys. Rev. B 12 905

    [20]

    Duan D, Huang X, Tian F, Li D, Yu H, Liu Y, Ma Y, Liu B, Cui T 2015 Phys. Rev. B 91 180502

    [21]

    Zhang S, Wang Y, Zhang J, Liu H, Zhong X, Song H F, Yang G, Zhang L, Ma Y 2015 Sci. Rep. 5 15433

    [22]

    Hu C H, Oganov A R, Zhu Q, Qian G R, Frapper G, Lyakhov A O, Zhou H Y 2013 Phys. Rev. Lett. 110 165504

    [23]

    Strobel T A, Ganesh P, Somayazulu M, Kent P R C, Hemley R J 2011 Phys. Rev. Lett. 107 255503

    [24]

    Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets M I, Drozdov A P, Troyan I A, Hirao N, Ohishi Y 2016 Nat. Phys. 12 835

    [25]

    Troyan I, Gavriliuk A, Rffer R, Chumakov A, Mironovich A, Lyubutin I, Perekalin D, Drozdov A P, Eremets M I 2016 Science 351 1303

    [26]

    Huang X, Wang X, Duan D, Bertil. S, Xin L, Huang Y, Li F, Zhou Q, Liu B, Cui T 2016 arXiv:1610.02630[cond-mat.supr-con]

    [27]

    Li Y, Hao J, Liu H, Li Y, Ma Y 2014 J. Chem. Phys. 140 174712

    [28]

    Ishikawa T, Nakanishi A, Shimizu K, Katayama-Yoshida H, Oda T, Suzuki N 2016 Sci. Rep. 6 23160

    [29]

    Li Y, Wang L, Liu H, Zhang Y, Hao J, Pickard C J, Nelson J R, Needs R J, Li W, Huang Y, Errea I, Calandra M, Mauri F, Ma Y 2016 Phys. Rev. B 93 020103

    [30]

    Goncharov A F, Lobanov S S, Kruglov I, Zhao X M, Chen X J, Oganov A R, Konôpková Z, Prakapenka V B 2016 Phys. Rev. B 93 174105

    [31]

    Bernstein N, Hellberg C S, Johannes M D, Mazin I I, Mehl M J 2015 Phys. Rev. B 91 060511

    [32]

    Papaconstantopoulos D A, Klein B M, Mehl M J, Pickett W E 2015 Phys. Rev. B 91 184511

    [33]

    Quan Y, Pickett W E 2016 Phys. Rev. B 93 104526

    [34]

    Ge Y, Zhang F, Yao Y 2016 Phys. Rev. B 93 224513

    [35]

    Abe K, Ashcroft N W 2011 Phys. Rev. B 84 104118

    [36]

    Jin X, Meng X, He Z, Ma Y, Liu B, Cui T, Zou G, Mao H K 2010 Proc. Natl. Acad. Sci. USA 107 9969

    [37]

    Kim D Y, Scheicher R H, Ahuja R 2008 Phys. Rev. B 78 100102

    [38]

    Wang H, John S T, Tanaka K, Iitaka T, Ma Y 2012 Proc. Natl. Acad. Sci. USA 109 6463

    [39]

    Feng X, Zhang J, Gao G, Liu H, Wang H 2015 RSC Adv. 5 59292

    [40]

    Li Y, Hao J, Liu H, Tse J S, Wang Y, Ma Y 2015 Sci. Rep. 5 9948

    [41]

    Zurek E, Hoffmann R, Ashcroft N W, Oganov A R, Lyakhov A O 2009 Proc. Natl. Acad. Sci. USA 106 17640

    [42]

    Baettig P, Zurek E 2011 Phys. Rev. Lett. 106 237002

    [43]

    Hooper J, Zurek E 2012 J. Phys. Chem. C 116 13322

    [44]

    Zhou D, Jin X, Meng X, Bao G, Ma Y, Liu B, Cui T 2012 Phys. Rev. B 86 014118

    [45]

    Hooper J, Zurek E 2012 Chem. A:Europ. J. 18 5013

    [46]

    Shamp A, Hooper J, Zurek E 2012 Inorg. Chem. 51 9333

    [47]

    Lonie D C, Hooper J, Altintas B, Zurek E 2013 Phys. Rev. B 87 054107

    [48]

    Hooper J, Terpstra T, Shamp A, Zurek E 2014 J. Phys. Chem. C 118 6433

    [49]

    Wang Y, Wang H, Tse J S, Iitaka T, Ma Y 2015 Phys. Chem. Chem. Phys. 17 19379

    [50]

    Hooper J, Altintas B, Shamp A, Zurek E 2013 J. Phys. Chem. C 117 2982

    [51]

    Liu Y, Duan D, Tian F, Liu H, Wang C, Huang X, Li D, Ma Y, Liu B, Cui T 2015 Inorg. Chem. 54 9924

    [52]

    Gao G, Oganov A R, Bergara A, Martinez-Canales M, Cui T, Iitaka T, Ma Y, Zou G 2008 Phys. Rev. Lett. 101 107002

    [53]

    Tse J S, Yao Y, Tanaka K 2007 Phys. Rev. Lett. 98 117004

    [54]

    Gao G, Oganov A R, Li P, Li Z, Wang H, Cui T, Ma Y, Bergara A, Lyakhov A O, Iitaka T, Zou G 2010 Proc. Natl. Acad. Sci. USA 107 1317

    [55]

    Zaleski-Ejgierd P, Hoffmann R, Ashcroft N W 2011 Phys. Rev. Lett. 107 037002

    [56]

    Fu Y, Du X, Zhang L, Peng F, Zhang M, Pickard C J, Needs R J, Singh D J, Zheng W, Ma Y 2016 Chem. Mater. 28 1746

    [57]

    Ma Y, Duan D, Li D, Liu Y, Tian F, Huang X, Zhao Z, Yu H, Liu B, Cui T 2015 arXiv:1506.03889[cond-mat.supr-con]

    [58]

    Ma Y, Duan D, Li D, Liu Y, Tian F, Yu H, Xu C, Shao Z, Liu B, Cui T 2015 arXiv:1511.05291[cond-mat.supr-con]

    [59]

    Zhong X, Wang H, Zhang J, Liu H, Zhang S, Song H F, Yang G, Zhang L, Ma Y 2016 Phys. Rev. Lett. 116 057002

    [60]

    Liu Y, Duan D, Tian F, Wang C, Wu G, Ma Y, Yu H, Li D, Liu B, Cui T 2015 RSC Adv. 5 103445

    [61]

    Duan D, Huang X, Tian F, Liu Y, Li D, Yu H, Liu B, Tian W, Cui T 2015 J. Phys. Chem. A 119 11059

    [62]

    Duan D, Tian F, Liu Y, Huang X, Li D, Yu H, Ma Y, Liu B, Cui T 2015 Phys. Chem. Chem. Phys. 17 32335

    [63]

    Shamp A, Zurek E 2015 J. Phys. Chem. Lett. 6 4067

    [64]

    Strobel T A, Somayazulu M, Hemley R J 2009 Phys. Rev. Lett. 103 065701

    [65]

    Wang S, Mao H K, Chen X J, Mao W L 2009 Proc. Natl. Acad. Sci. USA 106 14763

    [66]

    Strobel T A, Chen X J, Somayazulu M, Hemley R J 2010 J. Chem. Phys. 133 164512

    [67]

    Chen X Q, Wang S, Mao W L, Fu C L 2010 Phys. Rev. B 82 104115

    [68]

    Michel K, Liu Y, Ozolins V 2010 Phys. Rev. B 82 174103

    [69]

    Li Y, Gao G, Li Q, Ma Y, Zou G 2010 Phys. Rev. B 82 064104

    [70]

    Yao Y, Klug D D 2010 Proc. Natl. Acad. Sci. USA 107 20893

    [71]

    Li Y, Gao G, Xie Y, Ma Y, Cui T, Zou G 2010 Proc. Natl. Acad. Sci. USA 107 15708

    [72]

    Zhong G, Zhang C, Chen X, Li Y, Zhang R, Lin H 2012 J. Phys. Chem. C 116 5225

    [73]

    Thomson J J 1911 Philos. Mag. 21 225

    [74]

    Coulson C A 1935 Math. Proc. Cambridge Philos. Soc. 31 244

    [75]

    Oka T 2013 Chem. Rev. 113 8738

    [76]

    Stärck J, Meyer W 1993 Chem. Phys. 176 83

    [77]

    Wang W, Belyaev A K, Xu Y, Zhu A, Xiao C, Yang X F 2003 Chem. Phys. Lett. 377 512

    [78]

    Golser R, Gnaser H, Kutschera W, Priller A, Steier P, Wallner A,Čížek M, Horáček J, Domcke W 2005 Phys. Rev. Lett. 94 223003

    [79]

    Duan D, Tian F, Huang X, Li D, Yu H, Liu Y, Ma Y, Liu B, Cui T 2015 arXiv:1504.01196[cond-mat.supr-con]

    [80]

    Wang Z, Wang H, Tse J S, Iitaka T, Ma Y 2015 Chem. Sci. 6 522

    [81]

    Zeng Q, Yu S, Li D, Frapperb G, Oganov A R 2015 arXiv:1508.01395[cond-mat.mtrl-sci]

    [82]

    Pickett W E 2001 Physica B 296 112

    [83]

    Mazin I I 2010 Nature 464 183

  • [1] 宋婷, 孙小伟, 魏小平, 欧阳玉花, 张春林, 郭鹏, 赵炜. 方镁石高压结构预测和高温结构稳定性研究. 物理学报, 2019, 68(12): 126201. doi: 10.7498/aps.68.20190204
    [2] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理. 物理学报, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [3] 董家君, 姚明光, 刘世杰, 刘冰冰. 高压下准一维纳米结构的研究. 物理学报, 2017, 66(3): 039101. doi: 10.7498/aps.66.039101
    [4] 衣玮, 吴奇, 孙力玲. 压力下铁砷基化合物的超导电性研究. 物理学报, 2017, 66(3): 037402. doi: 10.7498/aps.66.037402
    [5] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究. 物理学报, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [6] 王玮, 尹新国. 铁基氟化物超导体SrFe1-xCoxAsF(x=0, 0.125)声子特性的第一性原理计算研究. 物理学报, 2014, 63(9): 097401. doi: 10.7498/aps.63.097401
    [7] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算. 物理学报, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [8] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究. 物理学报, 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [9] 王海燕, 历长云, 高洁, 胡前库, 米国发. 高压下TiAl3结构及热动力学性质的第一性原理研究. 物理学报, 2013, 62(6): 068105. doi: 10.7498/aps.62.068105
    [10] 明星, 王小兰, 杜菲, 陈岗, 王春忠, 尹建武. 菱铁矿FeCO3高压相变与性质的第一性原理研究. 物理学报, 2012, 61(9): 097102. doi: 10.7498/aps.61.097102
    [11] 张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉. Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能. 物理学报, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [12] 陈中钧. 高压下MgS的弹性性质、电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(17): 177104. doi: 10.7498/aps.61.177104
    [13] 孙家法, 王玮. 型烧绿石氧化物超导体AOs2O6 (A=K, Rb) 的声子软化与超导电性. 物理学报, 2012, 61(13): 137402. doi: 10.7498/aps.61.137402
    [14] 于大龙, 陈玉红, 曹一杰, 张材荣. Li2NH晶体结构建模和电子结构的第一性原理研究. 物理学报, 2010, 59(3): 1991-1996. doi: 10.7498/aps.59.1991
    [15] 祖 敏, 张鹰子, 闻海虎. 薄膜厚度对La1.85Sr0.15CuO4薄膜结构和超导电性的影响. 物理学报, 2008, 57(11): 7257-7261. doi: 10.7498/aps.57.7257
    [16] 丁迎春, 徐 明, 潘洪哲, 沈益斌, 祝文军, 贺红亮. γ-Si3N4在高压下的电子结构和物理性质研究. 物理学报, 2007, 56(1): 117-122. doi: 10.7498/aps.56.117
    [17] 马 荣, 黄桂芹, 刘 楣. 三元硅化物CaAlSi的结构和超导电性. 物理学报, 2007, 56(8): 4960-4964. doi: 10.7498/aps.56.4960
    [18] 陈镇平, 薛运才, 苏玉玲, 宫世成, 张金仓. Gd替代YBa2Cu3O7-δ超导体的相结构与局域电子结构的研究. 物理学报, 2005, 54(11): 5382-5388. doi: 10.7498/aps.54.5382
    [19] 陈 丽, 李 华. 新型超导材料MgCNi3的电子结构与超导电性研究. 物理学报, 2004, 53(3): 922-926. doi: 10.7498/aps.53.922
    [20] 陈镇平, 张金仓, 程国生, 李喜贵, 章讯生. 金属氧化物超导陶瓷Y-123体系烧结过程与结构缺陷的正电子实验研究. 物理学报, 2001, 50(3): 550-555. doi: 10.7498/aps.50.550
计量
  • 文章访问数:  4738
  • PDF下载量:  682
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-16
  • 修回日期:  2016-12-03
  • 刊出日期:  2017-02-05

高压下富氢化合物的结构与奇异超导电性

  • 1. 吉林大学物理学院, 超硬材料国家重点实验室, 长春 130012
  • 通信作者: 崔田, cuitian@jlu.edu.cn
    基金项目: 国家自然科学基金(批准号:51632002,11674122,51572108,11204100,11504127,11634004)和教育部长江学者和创新团队发展计划(批准号:IRT_15R23)资助的课题.

摘要: 在富氢化合物中,一方面由于非氢元素的存在会对氢的子晶格产生化学预压作用,这些体系比纯氢更容易金属化.另一方面由于含氢量较多,富氢化合物可能会具有像金属氢那样较高的超导转变温度,有望成为超导家族的新成员氢基超导体.高压下富氢化合物的结构及超导电性已成为物理、材料等多学科的研究热点,最近理论和实验发现硫氢化合物在高压下的超导转变温度达到200 K,创造了高温超导新纪录,进一步推动了人们对富氢化合物超导电性的研究.本文主要介绍了近年来高压下几种典型富氢化合物的结构、稳定性、原子间相互作用、金属化及超导电性,希望未来能在富氢化合物中寻找到具有更高超导转变温度的超导体.

English Abstract

参考文献 (83)

目录

    /

    返回文章
    返回