搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算

王金荣 朱俊 郝彦军 姬广富 向钢 邹洋春

引用本文:
Citation:

高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算

王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春

First-principles study of the structural, elastic and electronic properties of RhB under high pressure

Wang Jin-Rong, Zhu Jun, Hao Yan-Jun, Ji Guang-Fu, Xiang Gang, Zou Yang-Chun
PDF
导出引用
  • 采用密度泛函理论中的赝势平面波方法系统地研究了高压下RhB的结构相变、弹性性质、电子结构和硬度. 分析表明,RhB在25.3 GPa时从anti-NiAs结构相变到FeB结构,这两种结构的弹性常数、体弹模量、剪切模量、杨氏模量和弹性各向异性因子的外压力效应明显. 电子态密度的计算结果显示,这两种结构是金属性的,且费米能级附近的峰随着压强的增大向两侧移动,赝能隙变宽,轨道杂化增强,共价性增强,非局域化更加明显. 此外,硬度计算结果显示,anti-NiAs-RhB的金属性比较弱,有着较高的硬度,属于硬质材料.
    The structural phase transition, elastic, electronic properties and hardness for boride rhodium (RhB) under high pressure are systematically investigated by using the pseudopotential plane-wave density functional. The obtained lattice parameters, bulk modulus and elasitc constants are in good agreement with the available experimental and previous theoretical results at zero pressure. Furthermore, the mechanism of the high pressure structural phase transition is studied in detail. Our results show that RhB undergoes a structural phase transition from anti-NiAs-type to FeB-type at 25.3 GPa, which is in good agreement with other reported theoretical result. We also predict the pressure induced elastic constants, bulk modulus, shear modulus, Young's modulus, Poisson's coefficients, and elastic anisotropy factors, and find that the pressure has an important influence on the elastic properties. The calculated electronic density of states reveals that the pressure will strengthen the orbital hybridization between the Rh states and B states, the nonlocal effect and the strength of the covalent bond. Finally, on the basis of the Mulliken overlap populationanalysis, we obtain that the hardness of anti-NiAs-RhB is 18.1 GPa, which is compatible to the experimental value.
    • 基金项目: 教育部新世纪人才支持计划(批准号:11-0351)和国家自然科学基金(批准号:11004141,11174212)资助的课题.
    • Funds: Project supported by New Century Excellent Talents in University (NCET), China (Grant No. 11-0351), and the National Natural Science Foundation of China (Grant Nos. 11004141, 11174212).
    [1]

    Gu Q, Krauss G, Steurer W 2008 Adv. Mater. 20 3620

    [2]

    Kaner R B, Gilman J J, Tolbert S H 2005 Science 308 1268

    [3]

    Cumberland R W, Weinberger M B, Gilman J J, Clark S M, Tolbert S H, Kaner R B 2005 J. Am. Chem. Soc. 127 7264

    [4]

    Solozhenko V L, Dub S N, Novikov N V 2001 Diam. Relat. Mater. 10 2228

    [5]

    Solozhenko V L, Kurakevych O O, Andrault D, Godec Y L, Mezouar M 2009 Phys. Rev. Lett. 102 015506

    [6]

    Chung H Y, Weinberger M B, Yang J M, Tolbert S H, Kaner R B 2008 Appl. Phys. Lett. 92 261904

    [7]

    Gou H, Hou L, Zhang J, Li H, Sun G, Gao F 2006 Appl. Phys. Lett. 88 221904

    [8]

    Hebbache M, Stuparević L, Živković D A 2006 Solid. State. Commun. 139 227

    [9]

    Chiodo S, Gotsis H J, Russo N, Sicilia E 2006 Chem. Phys. Lett. 425 311

    [10]

    Zhao W J, Wang Y X 2009 J. Solid. State.Chem. 182 2880

    [11]

    Li J J, Zhao X P, Tao Q, Huang X Q, Zhu P W, Cui T, Wang X 2013 Acta Phys. Sin. 62 026202(in Chinese)[黎军军, 赵学坪, 陶强, 黄晓庆, 朱品文, 崔田, 王欣 2013 物理学报 62 026202]

    [12]

    Aronsson B, Åselius J, Stenberg E 1959 Nature 183 1318

    [13]

    Rau J V, Latini A 2009 Chem. Mater. 21 1407

    [14]

    Latini A, Rau J V, Teghil R, Generosi A, Albertini V R 2010 ACS Appl. Mater. Inter. 2 581

    [15]

    Wang Q, Zhao Z, Xu L, Wang L M, Yu D, Tian Y, He J 2011 J. Phys. Chem. C 115 19910

    [16]

    Bouhemadoua A, Khenata R 2006 Phys. Lett. A 25 339

    [17]

    Louail L, Maouche D, Roumili A, Sahraoui F A 2004 Mater. Lett. 58 2975

    [18]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [19]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [20]

    Payne M C, Teter M P, Allen D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [21]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [22]

    Pfrommer B G, Cote M, Louie S G, Cohen M L 1997 J. Comp. Physiol. 131 233

    [23]

    Wallace D C 1972 Thermodynamics of Crystals (New York: Wiley)

    [24]

    Wang J, Yip S, Phillpot S R, Wolf D 1995 Phys. Rev. B 52 12627

    [25]

    Barron T H K, Klein M L1965 Proc. Phys. Soc. 85 523

    [26]

    Reuss A, Angew Z 1929 Math. Mech. 9 55

    [27]

    Li W H 2012 J. Alloy. Compd. 537 216

    [28]

    Nye J F 1985 Physical Properties of Crystals (Oxford: Oxford University Press)

    [29]

    Hill R 1952 Proc. Soc. London. A 65 350

    [30]

    Nevitt M V, Chan S, Liu J Z, Grinsditch M H, Fang Y 1988 Physica B 150 230

    [31]

    Pugh S F 1954 Philos. Mag. 45 823

    [32]

    Frantsevich I N, Voronov F F, Bokuta S A 1983 Elastic Constants and Elastic Moduli of Metals and Insulators Handbook (Kiev: NaukovaDumka)

    [33]

    Wang J, Li C M, Ao J, Li F, Chen Z Q 2013 Acta Phys. Sin. 62 087102(in Chinese)[王瑨, 李春梅, 敖靖, 李凤, 陈志谦 2013 物理学报 62 087102]

    [34]

    Steinle-Neumann G, Stixrude L, Cohen R E 1999 Phys. Rev. B 60 791

    [35]

    Yang Z J, Guo Y D, Linghu R F, Cheng X L, Yang X D 2012 Chin. Phys. B 21 056301

    [36]

    Ravindran P, Fast L, Korzhavyl P A, Johansson B, Wills J, Eriksson O 1998 J. Appl. Phys. 84 4891

    [37]

    Anderson O L 1963 J. Phys. Chem. Solids. 24 909

    [38]

    Westbrook J H, Conrad H 1973 The Science of Hardness Testing and Its Research Applications (Ohio: American Society for Metals)

    [39]

    Gao F M 2006 Phys. Rev. B 73 132104

    [40]

    Xu H B, Wang Y X 2009 Acta Phys. Sin. 58 5645(in Chinese)[许红斌, 王渊旭 2009 物理学报 58 5645]

    [41]

    Wang Z H, Kuang X Y, Zhong M M, Peng L, Mao A J, Huang X F 2011 Europhys. Lett. 95 66005

    [42]

    Liu J, Kuang X Y, Wang Z H, Huang X F 2012 Chin. Phys. B 21 086103

    [43]

    Jin Y Y, Kuang X Y, Wang Z H, Huang X F 2013 High. Pressure Res. 33 153

    [44]

    Pu C Y, Zhou D W, Bao D X, Lu C, Jin X L, Su T C, Zhang F W 2014 Chin. Phys. B 23 026201

    [45]

    Gao F M, He J L, Wu E D, Liu S M, Yu D L, Li D C, Zhang S Y, Tian Y J 2003 Phys. Rev. Lett. 91 015502

    [46]

    Gou H, Hou L, Zhang J, Gao F 2008 Appl. Phys. Lett. 92 241901

  • [1]

    Gu Q, Krauss G, Steurer W 2008 Adv. Mater. 20 3620

    [2]

    Kaner R B, Gilman J J, Tolbert S H 2005 Science 308 1268

    [3]

    Cumberland R W, Weinberger M B, Gilman J J, Clark S M, Tolbert S H, Kaner R B 2005 J. Am. Chem. Soc. 127 7264

    [4]

    Solozhenko V L, Dub S N, Novikov N V 2001 Diam. Relat. Mater. 10 2228

    [5]

    Solozhenko V L, Kurakevych O O, Andrault D, Godec Y L, Mezouar M 2009 Phys. Rev. Lett. 102 015506

    [6]

    Chung H Y, Weinberger M B, Yang J M, Tolbert S H, Kaner R B 2008 Appl. Phys. Lett. 92 261904

    [7]

    Gou H, Hou L, Zhang J, Li H, Sun G, Gao F 2006 Appl. Phys. Lett. 88 221904

    [8]

    Hebbache M, Stuparević L, Živković D A 2006 Solid. State. Commun. 139 227

    [9]

    Chiodo S, Gotsis H J, Russo N, Sicilia E 2006 Chem. Phys. Lett. 425 311

    [10]

    Zhao W J, Wang Y X 2009 J. Solid. State.Chem. 182 2880

    [11]

    Li J J, Zhao X P, Tao Q, Huang X Q, Zhu P W, Cui T, Wang X 2013 Acta Phys. Sin. 62 026202(in Chinese)[黎军军, 赵学坪, 陶强, 黄晓庆, 朱品文, 崔田, 王欣 2013 物理学报 62 026202]

    [12]

    Aronsson B, Åselius J, Stenberg E 1959 Nature 183 1318

    [13]

    Rau J V, Latini A 2009 Chem. Mater. 21 1407

    [14]

    Latini A, Rau J V, Teghil R, Generosi A, Albertini V R 2010 ACS Appl. Mater. Inter. 2 581

    [15]

    Wang Q, Zhao Z, Xu L, Wang L M, Yu D, Tian Y, He J 2011 J. Phys. Chem. C 115 19910

    [16]

    Bouhemadoua A, Khenata R 2006 Phys. Lett. A 25 339

    [17]

    Louail L, Maouche D, Roumili A, Sahraoui F A 2004 Mater. Lett. 58 2975

    [18]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [19]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [20]

    Payne M C, Teter M P, Allen D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [21]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [22]

    Pfrommer B G, Cote M, Louie S G, Cohen M L 1997 J. Comp. Physiol. 131 233

    [23]

    Wallace D C 1972 Thermodynamics of Crystals (New York: Wiley)

    [24]

    Wang J, Yip S, Phillpot S R, Wolf D 1995 Phys. Rev. B 52 12627

    [25]

    Barron T H K, Klein M L1965 Proc. Phys. Soc. 85 523

    [26]

    Reuss A, Angew Z 1929 Math. Mech. 9 55

    [27]

    Li W H 2012 J. Alloy. Compd. 537 216

    [28]

    Nye J F 1985 Physical Properties of Crystals (Oxford: Oxford University Press)

    [29]

    Hill R 1952 Proc. Soc. London. A 65 350

    [30]

    Nevitt M V, Chan S, Liu J Z, Grinsditch M H, Fang Y 1988 Physica B 150 230

    [31]

    Pugh S F 1954 Philos. Mag. 45 823

    [32]

    Frantsevich I N, Voronov F F, Bokuta S A 1983 Elastic Constants and Elastic Moduli of Metals and Insulators Handbook (Kiev: NaukovaDumka)

    [33]

    Wang J, Li C M, Ao J, Li F, Chen Z Q 2013 Acta Phys. Sin. 62 087102(in Chinese)[王瑨, 李春梅, 敖靖, 李凤, 陈志谦 2013 物理学报 62 087102]

    [34]

    Steinle-Neumann G, Stixrude L, Cohen R E 1999 Phys. Rev. B 60 791

    [35]

    Yang Z J, Guo Y D, Linghu R F, Cheng X L, Yang X D 2012 Chin. Phys. B 21 056301

    [36]

    Ravindran P, Fast L, Korzhavyl P A, Johansson B, Wills J, Eriksson O 1998 J. Appl. Phys. 84 4891

    [37]

    Anderson O L 1963 J. Phys. Chem. Solids. 24 909

    [38]

    Westbrook J H, Conrad H 1973 The Science of Hardness Testing and Its Research Applications (Ohio: American Society for Metals)

    [39]

    Gao F M 2006 Phys. Rev. B 73 132104

    [40]

    Xu H B, Wang Y X 2009 Acta Phys. Sin. 58 5645(in Chinese)[许红斌, 王渊旭 2009 物理学报 58 5645]

    [41]

    Wang Z H, Kuang X Y, Zhong M M, Peng L, Mao A J, Huang X F 2011 Europhys. Lett. 95 66005

    [42]

    Liu J, Kuang X Y, Wang Z H, Huang X F 2012 Chin. Phys. B 21 086103

    [43]

    Jin Y Y, Kuang X Y, Wang Z H, Huang X F 2013 High. Pressure Res. 33 153

    [44]

    Pu C Y, Zhou D W, Bao D X, Lu C, Jin X L, Su T C, Zhang F W 2014 Chin. Phys. B 23 026201

    [45]

    Gao F M, He J L, Wu E D, Liu S M, Yu D L, Li D C, Zhang S Y, Tian Y J 2003 Phys. Rev. Lett. 91 015502

    [46]

    Gou H, Hou L, Zhang J, Gao F 2008 Appl. Phys. Lett. 92 241901

  • [1] 王碧涵, 李冰, 刘旭强, 王毫, 蒋升, 林传龙, 杨文革. 毫秒时间分辨同步辐射X射线衍射和高压快速加载装置及应用. 物理学报, 2022, 71(10): 100702. doi: 10.7498/aps.71.20212360
    [2] 孙小伟, 宋婷, 刘子江, 万桂新, 张磊, 常文利. 氟化镁高压萤石结构稳定性及热物性的数值模拟. 物理学报, 2020, 69(15): 156202. doi: 10.7498/aps.69.20200289
    [3] 姚盼盼, 王玲瑞, 王家祥, 郭海中. 高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质. 物理学报, 2020, 69(21): 218801. doi: 10.7498/aps.69.20200988
    [4] 付现凯, 陈万骐, 姜钟生, 杨波, 赵骧, 左良. Ti3O5弹性、电子和光学性质的第一性原理研究. 物理学报, 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [5] 吕常伟, 王臣菊, 顾建兵. 高温高压下立方氮化硼和六方氮化硼的结构、力学、热力学、电学以及光学性质的第一性原理研究. 物理学报, 2019, 68(7): 077102. doi: 10.7498/aps.68.20182030
    [6] 宋婷, 孙小伟, 魏小平, 欧阳玉花, 张春林, 郭鹏, 赵炜. 方镁石高压结构预测和高温结构稳定性研究. 物理学报, 2019, 68(12): 126201. doi: 10.7498/aps.68.20190204
    [7] 胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤. Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究. 物理学报, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [8] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究. 物理学报, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [9] 胡永金, 吴云沛, 刘国营, 罗时军, 何开华. ZnTe结构相变、电子结构和光学性质的研究. 物理学报, 2015, 64(22): 227802. doi: 10.7498/aps.64.227802
    [10] 王海燕, 历长云, 高洁, 胡前库, 米国发. 高压下TiAl3结构及热动力学性质的第一性原理研究. 物理学报, 2013, 62(6): 068105. doi: 10.7498/aps.62.068105
    [11] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [12] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究. 物理学报, 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [13] 王斌, 刘颖, 叶金文. 高压下TiC的弹性、电子结构及热力学性质的第一性原理计算. 物理学报, 2012, 61(18): 186501. doi: 10.7498/aps.61.186501
    [14] 陈中钧. 高压下MgS的弹性性质、电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(17): 177104. doi: 10.7498/aps.61.177104
    [15] 汝强, 胡社军, 赵灵智. LixFePO4(x=0.0, 0.75, 1.0)电子结构与弹性性质的第一性原理研究. 物理学报, 2011, 60(3): 036301. doi: 10.7498/aps.60.036301
    [16] 陈海川, 杨利君. LiGaX2(X=S, Se, Te)的电子结构,光学和弹性性质的第一性原理计算. 物理学报, 2011, 60(1): 014207. doi: 10.7498/aps.60.014207
    [17] 杨天兴, 成强, 许红斌, 王渊旭. 几种三元过渡金属碳化物弹性及电子结构的第一性原理研究. 物理学报, 2010, 59(7): 4919-4924. doi: 10.7498/aps.59.4919
    [18] 侯榆青, 张小东, 姜振益. 第一性原理计算MAlH4(M=Na, K)的结构和弹性性质. 物理学报, 2010, 59(8): 5667-5671. doi: 10.7498/aps.59.5667
    [19] 丁迎春, 徐 明, 潘洪哲, 沈益斌, 祝文军, 贺红亮. γ-Si3N4在高压下的电子结构和物理性质研究. 物理学报, 2007, 56(1): 117-122. doi: 10.7498/aps.56.117
    [20] 崔永锋, 袁志好. 表面修饰的二氧化钛纳米材料的结构相变和光吸收性质. 物理学报, 2006, 55(10): 5172-5177. doi: 10.7498/aps.55.5172
计量
  • 文章访问数:  3446
  • PDF下载量:  526
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-22
  • 修回日期:  2014-05-07
  • 刊出日期:  2014-09-05

高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算

  • 1. 四川大学物理与科学技术学院, 成都 610064;
  • 2. 中国工程物理研究院流体物理研究所, 绵阳 621900
    基金项目: 教育部新世纪人才支持计划(批准号:11-0351)和国家自然科学基金(批准号:11004141,11174212)资助的课题.

摘要: 采用密度泛函理论中的赝势平面波方法系统地研究了高压下RhB的结构相变、弹性性质、电子结构和硬度. 分析表明,RhB在25.3 GPa时从anti-NiAs结构相变到FeB结构,这两种结构的弹性常数、体弹模量、剪切模量、杨氏模量和弹性各向异性因子的外压力效应明显. 电子态密度的计算结果显示,这两种结构是金属性的,且费米能级附近的峰随着压强的增大向两侧移动,赝能隙变宽,轨道杂化增强,共价性增强,非局域化更加明显. 此外,硬度计算结果显示,anti-NiAs-RhB的金属性比较弱,有着较高的硬度,属于硬质材料.

English Abstract

参考文献 (46)

目录

    /

    返回文章
    返回