搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质

姚盼盼 王玲瑞 王家祥 郭海中

引用本文:
Citation:

高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质

姚盼盼, 王玲瑞, 王家祥, 郭海中

Evolutions of structural and optical properties of lead-free double perovskite Cs2TeCl6 under high pressure

Yao Pan-Pan, Wang Ling-Rui, Wang Jia-Xiang, Guo Hai-Zhong
PDF
HTML
导出引用
  • 无毒环保且稳定的非铅双钙钛矿材料因具有和铅基钙钛矿相似的三维结构, 被认为是铅基钙钛矿材料最有前景的替代品之一. 本文采用溶液法制备了一种新型非铅双钙钛矿材料Cs2TeCl6, 利用金刚石对顶砧高压装置和高压原位同步辐射X射线衍射、紫外-可见吸收光谱技术, 对其在高压下的晶体结构、光学带隙和电子结构演化进行了深入研究. 研究表明, 在实验压力范围(0—50.0 GPa)内Cs2TeCl6晶体结构并未发生改变, 始终保持Fm-3m的结构对称性, 表明该样品具有良好的稳定性; Cs2TeCl6的体积随压力的增加曲线变化比较平滑, 通过三阶Birch-Mumaghan状态方程得到了体弹模量B0 = (18.77 ± 2.88) GPa; Cs2TeCl6为间接带隙半导体, 在0—20.0 GPa范围内其光学带隙随着压力的增大逐渐减小, 这与高压下八面体[TeCl6]2–的收缩相关. 完全卸压后, Cs2TeCl6恢复到加压前的初始状态. 研究结果为深入理解此类材料的晶体结构和光学性质提供科学依据, 并为调控其晶格结构、光学带隙及电子结构提供思路.
    In recent years, organic-inorganic hybrid perovskite materials have been widely used in solar cells, photodetectors, and light-emitting diodes due to their advantages such as high light absorption coefficient, good carrier mobility, and long carrier diffusion length. However, the high toxicity of lead and poor stability still restrict the application and promotion of such materials. The lead-free double perovskite material derived from the concept of “heterovalent substitution”, while maintaining the high symmetrical structure of perovskite, avoids using the toxic lead elements, which has the advantages of environmental friendly, stable structure, and suitable band gap. At present, the limited research on lead-free double perovskite materials still leaves a big room to researchers, and such a limited research seriously restricts the development and promotion of such materials. Therefore, the relationship between the structure and performance of lead-free double perovskite materials needs further exploring in order to provide theoretical basis for the practical application of such materials. Here in this work, the lead-free double perovskite material Cs2TeCl6 is prepared by the solution method. The crystal structure and optical properties of the lead-free double perovskite Cs2TeCl6 under high pressure are investigated by using diamond anvil cell combined with in-situ high-pressure angle-dispersive X-ray diffraction and ultraviolet-visible absorption technology. The results show that the crystal structure of Cs2TeCl6 is not changed within the experimental pressure range of 0-50.0 GPa, and the structural symmetry of Fm-3m is still maintained, indicating the sample has good stability. The lattice constant and volume of Cs2TeCl6 gradually decrease within the pressure range of 0-50.0 GPa. The volume and pressure of Cs2TeCl6 are fitted using the third-order Birch-Mumaghan equation of state, the bulk elastic modulus is obtained to be B0 = (18.77 ± 2.88) GPa. The smaller bulk elastic modulus indicates that the lead-free double perovskite material Cs2TeCl6 has higher compressibility. The optical band gap of Cs2TeCl6 is 2.68(3) eV at 1 atm and its optical band gap gradually decreases with the increase of pressure, which is related to the shrinkage of octahedral [TeCl6]2– under high pressure. The calculation results show that the Cs2TeCl6 possesses an indirect band gap, the valence band maximum is mainly composed of Cl 3p orbits, and the conduction band minimum is mainly composed of Te 5p and Cl 3p orbits. After the pressure is completely relieved, Cs2TeCl6 returns to the initial state. The above conclusions further deepen the understanding of the crystal structure and optical properties of lead-free double perovskite Cs2TeCl6, and provide a theoretical basis for designing and optimizing the lead-free double perovskite materials.
      通信作者: 王玲瑞, wanglr@zzu.edu.cn ; 郭海中, hguo@zzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11904322)、中国科学院创新交叉团队(批准号: JCTD-2019-01)和河南省高校科技创新团队(批准号: 20IRTSTHN014)资助的课题
      Corresponding author: Wang Ling-Rui, wanglr@zzu.edu.cn ; Guo Hai-Zhong, hguo@zzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11904322), the Interdisciplinary Innovation Team of the Chinese Academy of Sciences, China (Grant No. JCTD-2019-01), and the Science and Technology Innovation Team in Colleges and Universities of Henan Province, China (Grant No. 20IRTSTHN014)
    [1]

    Dursun I, Shen C, Parida M R, Pan J, Sarmah S P, Priante D, Alyami N, Liu J, Saidaminov M I, Alias M S, Abdelhady A L, Ng T K, Mohammed O F, Ooi B S, Bakr O M 2016 ACS Photonics 3 1150Google Scholar

    [2]

    Chen J, Zhao X, Kim S G, Park N G 2019 Adv. Mater. 31 e1902902Google Scholar

    [3]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [4]

    Xu Y, Chen Q, Zhang C, Wang R, Wu H, Zhang X, Xing G, Yu W W, Wang X, Zhang Y, Xiao M 2016 J. Am. Chem. Soc. 138 3761Google Scholar

    [5]

    Wang J, Zhang C, Liu H, McLaughlin R, Zhai Y, Vardeny S R, Liu X, McGill S, Semenov D, Guo H, Tsuchikawa R, Deshpande V V, Sun D, Vardeny Z V 2019 Nat. Commun. 10 129Google Scholar

    [6]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [7]

    Li Y, Shi Z F, Li X J, Shan C X 2019 Chin. Phys. B 28 017803Google Scholar

    [8]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [9]

    Best Research-Cell Efficiency Chart https://www.nrel.gov/pv/cell-efficiency.html [2020-06-26]

    [10]

    Wang Z, Shi Z, Li T, Chen Y, Huang W 2017 Angew. Chem. Int. Ed. 56 1190Google Scholar

    [11]

    Zhang Q, Hao F, Li J, Zhou Y, Wei Y, Lin H 2018 Sci. Technol. Adv. Mater. 19 425Google Scholar

    [12]

    Abate A 2017 Joule 1 659Google Scholar

    [13]

    Qin X, Zhao Z, Wang Y, Wu J, Jiang Q, You J 2017 J. Semicond. 38 011002Google Scholar

    [14]

    Zhang Y Y, Chen S Y, Xu P, Xiang H J, Gong X G, Walsh A, Wei S H 2018 Chin. Phys. Lett. 35 036104Google Scholar

    [15]

    Zhao X G, Yang D, Ren J C, Sun Y, Xiao Z, Zhang L 2018 Joule 2 1662Google Scholar

    [16]

    Zhao X G, Yang J H, Fu Y, Yang D, Xu Q, Yu L, Wei S H, Zhang L 2017 J. Am. Chem. Soc. 139 2630Google Scholar

    [17]

    Ju M G, Chen M, Zhou Y, Garces H F, Dai J, Ma L, Padture N P, Zeng X C 2018 ACS Energy Lett. 3 297Google Scholar

    [18]

    Chen M, Ju M G, Carl A D, Zong Y, Grimm R L, Gu J, Zeng X C, Zhou Y, Padture N P 2018 Joule 2 558Google Scholar

    [19]

    Greul E, Petrus M L, Binek A, Docampo P, Bein T 2017 J. Mater. Chem. A 5 19972Google Scholar

    [20]

    程金光 2017 物理学报 66 037401Google Scholar

    Cheng J G 2017 Acta Phys. Sin. 66 037401Google Scholar

    [21]

    董家君, 姚明光, 刘世杰, 刘冰冰 2017 物理学报 66 039101Google Scholar

    Dong J J, Yao M G, Liu S J, Liu B B, 2017 Acta Phys. Sin. 66 039101Google Scholar

    [22]

    段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田 2017 物理学报 66 036102Google Scholar

    Duan D F, Ma Y B, Shao Z J, Xie H, Huang X L, Liu B B, Cui T 2017 Acta Phys. Sin. 66 036102Google Scholar

    [23]

    时旭含, 李海燕, 姚震, 刘冰冰 2020 物理学报 69 067101Google Scholar

    Shi X H, Li H Y, Yao Z, Liu B B 2020 Acta Phys. Sin. 69 067101Google Scholar

    [24]

    王春杰, 王月, 高春晓 2020 物理学报 69 147202Google Scholar

    Wang C J, Wang Y, Gao C X 2020 Acta Phys. Sin. 69 147202Google Scholar

    [25]

    Wang L, Wang K, Zou B 2016 J. Phys. Chem. Lett. 7 2556Google Scholar

    [26]

    Xiao G, Cao Y, Qi G, Wang L, Liu C, Ma Z, Yang X, Sui Y, Zheng W, Zou B 2017 J. Am. Chem. Soc. 139 10087Google Scholar

    [27]

    Zhang L, Zeng Q, Wang K 2017 J. Phys. Chem. Lett. 8 3752Google Scholar

    [28]

    Zhang L, Liu C, Wang L, Liu C, Wang K, Zou B 2018 Angew. Chem. Int. Ed. 57 11213Google Scholar

    [29]

    郭宏伟, 刘然, 王玲瑞, 崔金星, 宋波, 王凯, 刘冰冰, 邹勃 2017 物理学报 66 030701Google Scholar

    Guo H W, Liu R, Wang L R, Cui J X, Song B, Wang K, Liu B B, Zou B 2017 Acta Phys. Sin. 66 030701Google Scholar

    [30]

    Li Q, Wang Y, Pan W, Yang W, Zou B, Tang J, Quan Z 2017 Angew. Chem. Int. Ed. 56 15969Google Scholar

    [31]

    Wang L, Yao P, Wang F, Li S, Chen Y, Xia T, Guo E, Wang K, Zou B, Guo H 2020 Adv. Sci. 7 1902900Google Scholar

    [32]

    Maughan A E, Ganose A M, Bordelon M M, Miller E M, Scanlon D O, Neilson J R 2016 J. Am. Chem. Soc. 138 8453Google Scholar

    [33]

    Birch F 1978 J. Geophys. Res. 83 1257Google Scholar

    [34]

    Lee Y, Mitzi D B, Barnes P W, Vogt T 2003 Phys. Rev. B 68 020103Google Scholar

    [35]

    Lü X, Wang Y, Stoumpos C C, Hu Q, Guo X, Chen H, Yang L, Smith J S, Yang W, Zhao Y, Xu H, Kanatzidis M G, Jia Q 2016 Adv. Mater. 28 8663Google Scholar

    [36]

    Tauc J, Grigorovici R, Vancu A 1966 Phys. Status Solidi 15 627Google Scholar

    [37]

    Sa R, Wei Y, Zha W, Liu D 2020 Chem. Phys. Lett. 754 137538Google Scholar

    [38]

    Wang L, Ou T, Wang K, Xiao G, Gao C, Zou B 2017 Appl. Phys. Lett. 111 233901Google Scholar

    [39]

    Kong L, Liu G, Gong J, Hu Q, Schaller R D, Dera P, Zhang D, Liu Z, Yang W, Zhu K, Tang Y, Wang C, Wei S H, Xu T, Mao H K 2016 Proc. Natl. Acad. Sci. 113 8910Google Scholar

  • 图 1  不同压力下Cs2TeCl6的同步辐射XRD光谱

    Fig. 1.  Angle-dispersive XRD patterns of Cs2TeCl6 at various pressures.

    图 2  不同压力下Cs2TeCl6的精修结果

    Fig. 2.  Rietveld refinements of Cs2TeCl6 at different pressures.

    图 3  Cs2TeCl6的(a)晶格常数、(b) Te—Cl键长和(c)体积随压力的变化曲线

    Fig. 3.  High-pressure evolution of (a) the lattice parameters, (b) Te—Cl bond length and (c) volume of Cs2TeCl6.

    图 4  (a), (b) 不同压力下Cs2TeCl6的吸收光谱; (c) Cs2TeCl6的带隙随压力的变化

    Fig. 4.  (a), (b) Optical absorption spectra of Cs2TeCl6 at various pressures; (c) pressure dependence of band gap.

    图 5  Cs2TeCl6在不同压力下理论计算的能带结构和态密度

    Fig. 5.  Calculated band structures and density of states (DOS) of Cs2TeCl6 at various pressures.

  • [1]

    Dursun I, Shen C, Parida M R, Pan J, Sarmah S P, Priante D, Alyami N, Liu J, Saidaminov M I, Alias M S, Abdelhady A L, Ng T K, Mohammed O F, Ooi B S, Bakr O M 2016 ACS Photonics 3 1150Google Scholar

    [2]

    Chen J, Zhao X, Kim S G, Park N G 2019 Adv. Mater. 31 e1902902Google Scholar

    [3]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [4]

    Xu Y, Chen Q, Zhang C, Wang R, Wu H, Zhang X, Xing G, Yu W W, Wang X, Zhang Y, Xiao M 2016 J. Am. Chem. Soc. 138 3761Google Scholar

    [5]

    Wang J, Zhang C, Liu H, McLaughlin R, Zhai Y, Vardeny S R, Liu X, McGill S, Semenov D, Guo H, Tsuchikawa R, Deshpande V V, Sun D, Vardeny Z V 2019 Nat. Commun. 10 129Google Scholar

    [6]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [7]

    Li Y, Shi Z F, Li X J, Shan C X 2019 Chin. Phys. B 28 017803Google Scholar

    [8]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [9]

    Best Research-Cell Efficiency Chart https://www.nrel.gov/pv/cell-efficiency.html [2020-06-26]

    [10]

    Wang Z, Shi Z, Li T, Chen Y, Huang W 2017 Angew. Chem. Int. Ed. 56 1190Google Scholar

    [11]

    Zhang Q, Hao F, Li J, Zhou Y, Wei Y, Lin H 2018 Sci. Technol. Adv. Mater. 19 425Google Scholar

    [12]

    Abate A 2017 Joule 1 659Google Scholar

    [13]

    Qin X, Zhao Z, Wang Y, Wu J, Jiang Q, You J 2017 J. Semicond. 38 011002Google Scholar

    [14]

    Zhang Y Y, Chen S Y, Xu P, Xiang H J, Gong X G, Walsh A, Wei S H 2018 Chin. Phys. Lett. 35 036104Google Scholar

    [15]

    Zhao X G, Yang D, Ren J C, Sun Y, Xiao Z, Zhang L 2018 Joule 2 1662Google Scholar

    [16]

    Zhao X G, Yang J H, Fu Y, Yang D, Xu Q, Yu L, Wei S H, Zhang L 2017 J. Am. Chem. Soc. 139 2630Google Scholar

    [17]

    Ju M G, Chen M, Zhou Y, Garces H F, Dai J, Ma L, Padture N P, Zeng X C 2018 ACS Energy Lett. 3 297Google Scholar

    [18]

    Chen M, Ju M G, Carl A D, Zong Y, Grimm R L, Gu J, Zeng X C, Zhou Y, Padture N P 2018 Joule 2 558Google Scholar

    [19]

    Greul E, Petrus M L, Binek A, Docampo P, Bein T 2017 J. Mater. Chem. A 5 19972Google Scholar

    [20]

    程金光 2017 物理学报 66 037401Google Scholar

    Cheng J G 2017 Acta Phys. Sin. 66 037401Google Scholar

    [21]

    董家君, 姚明光, 刘世杰, 刘冰冰 2017 物理学报 66 039101Google Scholar

    Dong J J, Yao M G, Liu S J, Liu B B, 2017 Acta Phys. Sin. 66 039101Google Scholar

    [22]

    段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田 2017 物理学报 66 036102Google Scholar

    Duan D F, Ma Y B, Shao Z J, Xie H, Huang X L, Liu B B, Cui T 2017 Acta Phys. Sin. 66 036102Google Scholar

    [23]

    时旭含, 李海燕, 姚震, 刘冰冰 2020 物理学报 69 067101Google Scholar

    Shi X H, Li H Y, Yao Z, Liu B B 2020 Acta Phys. Sin. 69 067101Google Scholar

    [24]

    王春杰, 王月, 高春晓 2020 物理学报 69 147202Google Scholar

    Wang C J, Wang Y, Gao C X 2020 Acta Phys. Sin. 69 147202Google Scholar

    [25]

    Wang L, Wang K, Zou B 2016 J. Phys. Chem. Lett. 7 2556Google Scholar

    [26]

    Xiao G, Cao Y, Qi G, Wang L, Liu C, Ma Z, Yang X, Sui Y, Zheng W, Zou B 2017 J. Am. Chem. Soc. 139 10087Google Scholar

    [27]

    Zhang L, Zeng Q, Wang K 2017 J. Phys. Chem. Lett. 8 3752Google Scholar

    [28]

    Zhang L, Liu C, Wang L, Liu C, Wang K, Zou B 2018 Angew. Chem. Int. Ed. 57 11213Google Scholar

    [29]

    郭宏伟, 刘然, 王玲瑞, 崔金星, 宋波, 王凯, 刘冰冰, 邹勃 2017 物理学报 66 030701Google Scholar

    Guo H W, Liu R, Wang L R, Cui J X, Song B, Wang K, Liu B B, Zou B 2017 Acta Phys. Sin. 66 030701Google Scholar

    [30]

    Li Q, Wang Y, Pan W, Yang W, Zou B, Tang J, Quan Z 2017 Angew. Chem. Int. Ed. 56 15969Google Scholar

    [31]

    Wang L, Yao P, Wang F, Li S, Chen Y, Xia T, Guo E, Wang K, Zou B, Guo H 2020 Adv. Sci. 7 1902900Google Scholar

    [32]

    Maughan A E, Ganose A M, Bordelon M M, Miller E M, Scanlon D O, Neilson J R 2016 J. Am. Chem. Soc. 138 8453Google Scholar

    [33]

    Birch F 1978 J. Geophys. Res. 83 1257Google Scholar

    [34]

    Lee Y, Mitzi D B, Barnes P W, Vogt T 2003 Phys. Rev. B 68 020103Google Scholar

    [35]

    Lü X, Wang Y, Stoumpos C C, Hu Q, Guo X, Chen H, Yang L, Smith J S, Yang W, Zhao Y, Xu H, Kanatzidis M G, Jia Q 2016 Adv. Mater. 28 8663Google Scholar

    [36]

    Tauc J, Grigorovici R, Vancu A 1966 Phys. Status Solidi 15 627Google Scholar

    [37]

    Sa R, Wei Y, Zha W, Liu D 2020 Chem. Phys. Lett. 754 137538Google Scholar

    [38]

    Wang L, Ou T, Wang K, Xiao G, Gao C, Zou B 2017 Appl. Phys. Lett. 111 233901Google Scholar

    [39]

    Kong L, Liu G, Gong J, Hu Q, Schaller R D, Dera P, Zhang D, Liu Z, Yang W, Zhu K, Tang Y, Wang C, Wei S H, Xu T, Mao H K 2016 Proc. Natl. Acad. Sci. 113 8910Google Scholar

  • [1] 陈贝, 邓永和, 祁青华, 高明, 文大东, 王小云, 彭平. 高压下快凝Pd82Si18非晶合金中二十面体结构分析. 物理学报, 2024, 73(2): 026101. doi: 10.7498/aps.73.20231101
    [2] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下缺陷对锐钛矿相TiO2多晶电输运性能的影响: 交流阻抗测量. 物理学报, 2023, 72(12): 126401. doi: 10.7498/aps.72.20230020
    [3] 郭宏伟, 刘然, 王玲瑞, 崔金星, 宋波, 王凯, 刘冰冰, 邹勃. 高压下有机-无机杂化钙钛矿CH3NH3PbI3的结构及光学性质研究. 物理学报, 2017, 66(3): 030701. doi: 10.7498/aps.66.030701
    [4] 丁琨, 武雪飞, 窦秀明, 孙宝权. 电驱动金刚石对顶砧低温连续加压装置. 物理学报, 2016, 65(3): 037701. doi: 10.7498/aps.65.037701
    [5] 胡晓颖, 郭晓霞, 胡文弢, 呼和满都拉, 郑晓霞, 荆丽丽. 旋转方形散射体对三角晶格磁振子晶体带结构的优化. 物理学报, 2015, 64(10): 107501. doi: 10.7498/aps.64.107501
    [6] 刘伯飞, 白立沙, 张德坤, 魏长春, 孙建, 侯国付, 赵颖, 张晓丹. 非晶硅界面缓冲层对非晶硅锗电池性能的影响. 物理学报, 2013, 62(24): 248801. doi: 10.7498/aps.62.248801
    [7] 吴迪, 赵纪军, 田华. Fe2+取代对MgSiO3钙钛矿高温高压物性的影响. 物理学报, 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [8] 文岐华, 左曙光, 魏欢. 多振子梁弯曲振动中的局域共振带隙. 物理学报, 2012, 61(3): 034301. doi: 10.7498/aps.61.034301
    [9] 唐杰, 杨梨容, 王晓军, 张林, 魏成富, 陈擘威, 梅杨. 高压对大块(PrNd)xAl0.6Nb0.5Cu0.15B1.05Fe97.7-x合金微观结构和性能的影响. 物理学报, 2012, 61(24): 240701. doi: 10.7498/aps.61.240701
    [10] 胡家光, 徐文, 肖宜明, 张丫丫. 晶格中心插入体的对称性及取向对二维声子晶体带隙的影响. 物理学报, 2012, 61(23): 234302. doi: 10.7498/aps.61.234302
    [11] 郑莹莹, 邓海涛, 万静, 李超荣. 有机-无机杂化钙钛矿自组装量子阱结构的能带调控和光电性能的研究. 物理学报, 2011, 60(6): 067306. doi: 10.7498/aps.60.067306
    [12] 邓杨, 王如志, 徐利春, 房慧, 严辉. 立方(Ba0.5Sr0.5)TiO3高压诱导带隙变化的第一性原理研究. 物理学报, 2011, 60(11): 117309. doi: 10.7498/aps.60.117309
    [13] 吴宝嘉, 韩永昊, 彭刚, 金逢锡, 顾广瑞, 高春晓. 金刚石对顶砧中触点位置误差对样品电阻率测量精度的影响(已撤稿). 物理学报, 2011, 60(12): 127203. doi: 10.7498/aps.60.127203
    [14] 王立勇, 曹永军. 散射体排列方式对二维磁振子晶体带隙结构的影响. 物理学报, 2011, 60(9): 097501. doi: 10.7498/aps.60.097501
    [15] 吴宝嘉, 韩永昊, 彭刚, 刘才龙, 王月, 高春晓. 原位高压微米氧化锌电学性质的研究. 物理学报, 2010, 59(6): 4235-4239. doi: 10.7498/aps.59.4235
    [16] 许振龙, 吴福根. 基元配置对二维光子晶体不同能带之间带隙的调节和优化. 物理学报, 2009, 58(9): 6285-6290. doi: 10.7498/aps.58.6285
    [17] 王秀英, 陈 莹, 张宁玉, 赵丽萍, 庞岩涛, 王文魁. 压力对Zr46.75Ti8.25Cu7.5Ni10Be27.5大块非晶合金玻璃转变和晶化动力学的影响. 物理学报, 2007, 56(7): 4004-4008. doi: 10.7498/aps.56.4004
    [18] 牟中飞, 吴福根, 张 欣, 钟会林. 超元胞方法研究平移群对称性对声子带隙的影响. 物理学报, 2007, 56(8): 4694-4699. doi: 10.7498/aps.56.4694
    [19] 高绪团, 傅 雪, 宋 骏, 刘德胜, 解士杰. 位置涨落对DNA分子电子结构的影响. 物理学报, 2006, 55(2): 952-956. doi: 10.7498/aps.55.952
    [20] 赵 芳, 苑立波. 二维复式格子声子晶体带隙结构特性. 物理学报, 2005, 54(10): 4511-4516. doi: 10.7498/aps.54.4511
计量
  • 文章访问数:  8990
  • PDF下载量:  302
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-26
  • 修回日期:  2020-07-10
  • 上网日期:  2020-11-02
  • 刊出日期:  2020-11-05

/

返回文章
返回