搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电驱动金刚石对顶砧低温连续加压装置

丁琨 武雪飞 窦秀明 孙宝权

引用本文:
Citation:

电驱动金刚石对顶砧低温连续加压装置

丁琨, 武雪飞, 窦秀明, 孙宝权

In situ tuning hydrostatic pressure at low temperature using electrically driven diamond anvil cell

Ding Kun, Wu Xue-Fei, Dou Xiu-Ming, Sun Bao-Quan
PDF
导出引用
  • 采用电驱动压电陶瓷取代传统机械螺丝给金刚石对顶砧施加压力, 设计制备了低温下可连续增加流体静压的金刚石对顶砧压力装置, 实现了低温(19 1)K连续加压达到4.41 GPa. 该装置具有电驱动方便灵活、调谐精度高的低温连续加压功能. 利用该装置实现了InAs单量子点发光与微腔腔模的共振耦合调谐过程. 该装置将在原位压力精确调谐及测量样品信号跟踪等实验得到应用.
    Traditionally, a diamond anvil cell (DAC) operated at low temperature can be pressurized by using a helium-driven piston or remote control tightening mechanism. This approach of pressurizing DAC is not convenient for operating at low temperature. Here we develop a low-temperature pressurizing technique for in situ tuning pressure in DAC at 20 K by an electrically driven method. The improved DAC pressure apparatus is composed of traditional DAC device and a piezoelectric actuator (PZT). Here the PZT used in the experiment is the PSt 150/1010/40 supplied by the Piezomechanik. Both parts are assembled together in a red copper or stainless steel cylinder. The DAC part is thermally contacted with a low temperature holder for cooling the chamber of the DAC in the experiment. The wires of the PZT connect with the voltage source through the wiring terminals of the cryostat. As the DAC apparatus cools down, two electrodes of the PZT are connected together when a voltage difference between the electrodes is generated. When the temperature of the DAC chamber arrives at the presetting value, two electrodes of the PZT are connected with the voltage source for applying voltage to the PZT. In this paper, we find that the PZT stroke shows a linear increase with increasing voltage at 300 K, whereas it is approximately linear at 80 and 6 K. The maximum strokes are 40, 26 and 15 upm at 300, 80 and 6 K respectively when the applied voltage is 120 V. The experimental results show that the PZT-driven DAC apparatus can continuously generate pressure from 0.49 to 4.41 GPa at low temperature and applied voltage of 0-290 V, where at zero voltage an initial pressure of 0.49 GPa is generated by using driven screws of the DAC device at room temperature. The pressure in the DAC chamber is determined by the red shift of ruby florescence line. The calibrated chamber temperature in DAC is determined as a function of pressure (PZT voltage) by using the intensity ration (R2/R1) of ruby R2 and R1 fluorescence lines. We find that the chamber temperature only slightly increases with increasing pressure in a range of (19 1) K. The main difference between the present device and the other tuning DAC apparatus is that the force on the DAC can be conveniently applied by using PZT voltage. This guarantees a high pressure-tuned resolution in the experiment, e. g., we tune a single InAs quantum dot (QD) emission wavelength to match the cavity mode. Such a tuning technique is found to have applications in realizing a compact tunable single photon source or completing two-photon interference of Hong-Ou-Mandel experiments between the QD and nitrogen vacancy center in diamond or atom, respectively.
      通信作者: 孙宝权, bqsun@semi.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11474275)资助的课题.
      Corresponding author: Sun Bao-Quan, bqsun@semi.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11474275).
    [1]

    Bridgman P W 1935 Proc. Am. Acad. Arts Sci. 70 285

    [2]

    Bridgman P W 1938 Proc. Am. Acad. Arts Sci. 72 200

    [3]

    Lawson A W, Tang T Y 1950 Rev. Sci. Instrum. 21 815

    [4]

    Jamieson J C, Lawson A W, Nachtrieb N D 1959 Rev. Sci. Instrum. 30 1016

    [5]

    Weir C E, Lippincott E R, Van Valkenburg A, Bunting E N 1959 J. Res. Natl. Bur. Stand. A 63 55

    [6]

    Weir C E, Block S, Piermarini G J 1965 J. Res. Natl. Bur. Stand. C 69 275

    [7]

    Piermarini G J, Weir C E 1962 J. Res. Natl. Bur. Stand. A 66 325

    [8]

    Wan Walkenburg A 1964 Diamond Research 17

    [9]

    Barnett J D, Block S, Piermarini G J 1973 Rev. Sci. Instrum. 44 1

    [10]

    Piermarini G J, Block S, Barnett J D 1973 J. Appl. Phys. 44 5377

    [11]

    Besson J M, Pincaeaux J P 1979 Science 206 1073

    [12]

    Mao H K, Bell P M 1978 Carnegie Institute Washington Year Book p659

    [13]

    Moss W C, Hallquist J O, Reichlin R, Goettel K A, Martin S 1986 Appl. Phys. Lett. 48 1258

    [14]

    Jayaraman A 1983 Rev. Mod. Phys. 55 65

    [15]

    Erements M 1996 High Pressure Experimental Methods (Oxford: Oxford University press) p 205

    [16]

    Wu B Q, Wang W K, Jin C Q, Liu W, Li F H, Liu S C, Liu Z X, Zhao Z X, Yao Y S 1992 Acta Phys. Sin. 41 1993 (in Chinese) [吴冰青, 王文魁, 靳常青, 刘维, 李方华, 刘世超, 刘振兴, 赵忠贤, 姚玉书 1992 物理学报 41 1993]

    [17]

    Wu W, Cheng J G, Matsubayashi K, Kong P P, Lin F K, Jin C Q, Wang N L, Uwatoko Y, Luo J L 2014 Nature Comm. 5 5508

    [18]

    Ma B S, Wang X D, Su F H, Fang Z L, Ding K, Niu Z C, Li G H 2004 J. Appl. Phys. 95 933

    [19]

    Suski T, Paul W 1998 High Pressure in Semiconductor Physics I (Pittsburgh: Academic Press) p248

    [20]

    Piermarini G J, Block S, Barnett J D, Forman R A 1975 J. Appl. Phys. 46 2774

    [21]

    Mao H K, Bell P M 1978 Science 200 1145

    [22]

    Zhou P Y, Wu X F, Ding K, Dou X M, Zha G W, Ni H Q, Niu Z C, Zhu H J, Jiang D S, Zhao C L, Sun B Q 2015 J. Appl. Phys. 117 014304

    [23]

    Wu X F, Dou X M, Ding K, Zhou P Y, Ni H Q, Niu Z C, Jiang D S, Sun B Q 2013 Appl. Phys. Lett. 103 252108

    [24]

    Wu X F, Wei H, Dou X M, Ding K, Ni H Q, Niu Z C, Ji Y, Li S S, Jiang D S, Guo G C, He L X, Sun B Q 2014 Europhys. Lett. 107 27008

    [25]

    Goi A R, Syassen K, Cardona M 1990 Phys. Rev. B 41 10104

  • [1]

    Bridgman P W 1935 Proc. Am. Acad. Arts Sci. 70 285

    [2]

    Bridgman P W 1938 Proc. Am. Acad. Arts Sci. 72 200

    [3]

    Lawson A W, Tang T Y 1950 Rev. Sci. Instrum. 21 815

    [4]

    Jamieson J C, Lawson A W, Nachtrieb N D 1959 Rev. Sci. Instrum. 30 1016

    [5]

    Weir C E, Lippincott E R, Van Valkenburg A, Bunting E N 1959 J. Res. Natl. Bur. Stand. A 63 55

    [6]

    Weir C E, Block S, Piermarini G J 1965 J. Res. Natl. Bur. Stand. C 69 275

    [7]

    Piermarini G J, Weir C E 1962 J. Res. Natl. Bur. Stand. A 66 325

    [8]

    Wan Walkenburg A 1964 Diamond Research 17

    [9]

    Barnett J D, Block S, Piermarini G J 1973 Rev. Sci. Instrum. 44 1

    [10]

    Piermarini G J, Block S, Barnett J D 1973 J. Appl. Phys. 44 5377

    [11]

    Besson J M, Pincaeaux J P 1979 Science 206 1073

    [12]

    Mao H K, Bell P M 1978 Carnegie Institute Washington Year Book p659

    [13]

    Moss W C, Hallquist J O, Reichlin R, Goettel K A, Martin S 1986 Appl. Phys. Lett. 48 1258

    [14]

    Jayaraman A 1983 Rev. Mod. Phys. 55 65

    [15]

    Erements M 1996 High Pressure Experimental Methods (Oxford: Oxford University press) p 205

    [16]

    Wu B Q, Wang W K, Jin C Q, Liu W, Li F H, Liu S C, Liu Z X, Zhao Z X, Yao Y S 1992 Acta Phys. Sin. 41 1993 (in Chinese) [吴冰青, 王文魁, 靳常青, 刘维, 李方华, 刘世超, 刘振兴, 赵忠贤, 姚玉书 1992 物理学报 41 1993]

    [17]

    Wu W, Cheng J G, Matsubayashi K, Kong P P, Lin F K, Jin C Q, Wang N L, Uwatoko Y, Luo J L 2014 Nature Comm. 5 5508

    [18]

    Ma B S, Wang X D, Su F H, Fang Z L, Ding K, Niu Z C, Li G H 2004 J. Appl. Phys. 95 933

    [19]

    Suski T, Paul W 1998 High Pressure in Semiconductor Physics I (Pittsburgh: Academic Press) p248

    [20]

    Piermarini G J, Block S, Barnett J D, Forman R A 1975 J. Appl. Phys. 46 2774

    [21]

    Mao H K, Bell P M 1978 Science 200 1145

    [22]

    Zhou P Y, Wu X F, Ding K, Dou X M, Zha G W, Ni H Q, Niu Z C, Zhu H J, Jiang D S, Zhao C L, Sun B Q 2015 J. Appl. Phys. 117 014304

    [23]

    Wu X F, Dou X M, Ding K, Zhou P Y, Ni H Q, Niu Z C, Jiang D S, Sun B Q 2013 Appl. Phys. Lett. 103 252108

    [24]

    Wu X F, Wei H, Dou X M, Ding K, Ni H Q, Niu Z C, Ji Y, Li S S, Jiang D S, Guo G C, He L X, Sun B Q 2014 Europhys. Lett. 107 27008

    [25]

    Goi A R, Syassen K, Cardona M 1990 Phys. Rev. B 41 10104

  • [1] 厉桂华, 张梦雅, 马慧, 田悦, 焦安欣, 郑林启, 王畅, 陈明, 刘向东, 李爽, 崔清强, 李冠华. 低温促进表面等离激元共振效应及肌酐的超灵敏表面增强拉曼散射探测. 物理学报, 2022, 71(14): 146101. doi: 10.7498/aps.71.20220151
    [2] 张松然, 何代华, 涂华垚, 孙艳, 康亭亭, 戴宁, 褚君浩, 俞国林. HgCdTe薄膜的输运特性及其应力调控. 物理学报, 2020, 69(5): 057301. doi: 10.7498/aps.69.20191330
    [3] 姚盼盼, 王玲瑞, 王家祥, 郭海中. 高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质. 物理学报, 2020, 69(21): 218801. doi: 10.7498/aps.69.20200988
    [4] 刘亦轩, 李昭, 汤浩正, 逯景桐, 李敬锋, 龚文, 王轲. 晶粒尺寸对钙钛矿型压电陶瓷压电性能的影响. 物理学报, 2020, 69(21): 217704. doi: 10.7498/aps.69.20201079
    [5] 秦璐, 任杰, 许兴胜. 垂直腔面发射激光器低温光电特性. 物理学报, 2019, 68(19): 194203. doi: 10.7498/aps.68.20190427
    [6] 郑隆立, 齐世超, 王春明, 石磊. 高居里温度铋层状结构钛钽酸铋(Bi3TiTaO9)的压电、介电和铁电特性. 物理学报, 2019, 68(14): 147701. doi: 10.7498/aps.68.20190222
    [7] 郭宏伟, 刘然, 王玲瑞, 崔金星, 宋波, 王凯, 刘冰冰, 邹勃. 高压下有机-无机杂化钙钛矿CH3NH3PbI3的结构及光学性质研究. 物理学报, 2017, 66(3): 030701. doi: 10.7498/aps.66.030701
    [8] 侯佳佳, 赵刚, 谭巍, 邱晓东, 贾梦源, 马维光, 张雷, 董磊, 冯晓霞, 尹王保, 肖连团, 贾锁堂. 基于压电陶瓷与光纤电光调制器双通道伺服反馈的激光相位锁定实验研究. 物理学报, 2016, 65(23): 234204. doi: 10.7498/aps.65.234204
    [9] 曹山, 刘江平, 黎军, 王凯, 林伟, 雷海乐. 近三相点氮分子固体的低温红外吸收特性研究. 物理学报, 2015, 64(7): 073301. doi: 10.7498/aps.64.073301
    [10] 李铭杰, 高红, 李江禄, 温静, 李凯, 张伟光. 低温下单根ZnO纳米带电学性质的研究. 物理学报, 2013, 62(18): 187302. doi: 10.7498/aps.62.187302
    [11] 何永周, 周巧根. 上海光源低温波荡器永磁铁在低温下的磁特性研究. 物理学报, 2013, 62(4): 044106. doi: 10.7498/aps.62.044106
    [12] 朱敏昊, 吴学健, 尉昊赟, 张丽琼, 张继涛, 李岩. 基于飞秒光频梳的压电陶瓷闭环位移控制系统. 物理学报, 2013, 62(7): 070702. doi: 10.7498/aps.62.070702
    [13] 凌进中, 黄元申, 王中飞, 王琦, 张大伟, 庄松林. 可调谐型金属线栅偏振器的特性研究 . 物理学报, 2013, 62(14): 144214. doi: 10.7498/aps.62.144214
    [14] 刘天元, 孙成林, 里佐威, 周密. Raman光谱方法研究三氯甲烷与苯分子间的 C/H相互作用. 物理学报, 2012, 61(10): 107801. doi: 10.7498/aps.61.107801
    [15] 吴宝嘉, 韩永昊, 彭刚, 金逢锡, 顾广瑞, 高春晓. 金刚石对顶砧中触点位置误差对样品电阻率测量精度的影响(已撤稿). 物理学报, 2011, 60(12): 127203. doi: 10.7498/aps.60.127203
    [16] 吴宝嘉, 韩永昊, 彭刚, 刘才龙, 王月, 高春晓. 原位高压微米氧化锌电学性质的研究. 物理学报, 2010, 59(6): 4235-4239. doi: 10.7498/aps.59.4235
    [17] 孙琳, 褚君浩, 杨平雄, 冯楚德. Sr位Nd掺杂对SrBi2Nb2O9性能的影响及机理研究. 物理学报, 2009, 58(8): 5790-5797. doi: 10.7498/aps.58.5790
    [18] 厉旭杰, 聂秋华, 戴世勋, 徐铁峰, 沈 祥, 章向华. 低温下Er3+/Yb3+共掺碲酸盐玻璃的发光特性研究. 物理学报, 2008, 57(5): 3001-3005. doi: 10.7498/aps.57.3001
    [19] 徐耿钊, 梁 琥, 白永强, 刘纪美, 朱 星. 低温近场光学显微术对InGaN/GaN多量子阱电致发光温度特性的研究. 物理学报, 2005, 54(11): 5344-5349. doi: 10.7498/aps.54.5344
    [20] 张廷庆, 刘传洋, 刘家璐, 王剑屏, 黄智, 徐娜军, 何宝平, 彭宏论, 姚育娟. 低温低剂量率下金属-氧化物-半导体器件的辐照效应. 物理学报, 2001, 50(12): 2434-2438. doi: 10.7498/aps.50.2434
计量
  • 文章访问数:  4225
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-11
  • 修回日期:  2015-11-04
  • 刊出日期:  2016-02-05

电驱动金刚石对顶砧低温连续加压装置

  • 1. 中国科学院半导体研究所, 半导体超晶格国家重点实验室, 北京 100083
  • 通信作者: 孙宝权, bqsun@semi.ac.cn
    基金项目: 国家自然科学基金(批准号: 11474275)资助的课题.

摘要: 采用电驱动压电陶瓷取代传统机械螺丝给金刚石对顶砧施加压力, 设计制备了低温下可连续增加流体静压的金刚石对顶砧压力装置, 实现了低温(19 1)K连续加压达到4.41 GPa. 该装置具有电驱动方便灵活、调谐精度高的低温连续加压功能. 利用该装置实现了InAs单量子点发光与微腔腔模的共振耦合调谐过程. 该装置将在原位压力精确调谐及测量样品信号跟踪等实验得到应用.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回