搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位高压微米氧化锌电学性质的研究

吴宝嘉 韩永昊 彭刚 刘才龙 王月 高春晓

引用本文:
Citation:

原位高压微米氧化锌电学性质的研究

吴宝嘉, 韩永昊, 彭刚, 刘才龙, 王月, 高春晓

Research of in-situ electrical property of micron dimension ZnO under high pressure

Wu Bao-Jia, Han Yong-Hao, Peng Gang, Liu Cai-Long, Wang Yue, Gao Chun-Xiao
PDF
导出引用
  • 利用集成有金属薄膜电极的金刚石对顶砧,对微米氧化锌样品进行了原位高压电导率测量.结果表明,在919 GPa时样品电导率达到最小值,在919—1122 GPa时样品电导率急剧增大,说明此时样品从纤锌矿结构向岩盐矿结构转变直至完全相变,1122 GPa为相变点.通过测量不同条件下高温退火处理的样品电导率,明显看到氧空位对电导率的影响.
    Using the diamond anvil cell(DAC)method and the technology of sputtered film, photoetch and chemical etching, the conductivity of micron dimension ZnO were measured successfully under high pressure with molybdenum electrodes on DAC. The samples conductivity was minimal at 919 GPa pressure, which showed the beginning of structural phase transition from wurtzite to rocksalt. Contining compression as far as 1122 GPa, the conductivity increased rapidly and then slowly, which indicated the phase transformation pressure spot was 1122 GPa and the whole example was of rocksalt structure. In addition, it was found that the oxygen holes caused conductivity change by experimentally comparing the samples annealed at 500 ℃ in air, in argon and unannealed respectively.
    • 基金项目: 国家自然科学基金(批准号:10874053,50532020, 50802033)、国家重点基础研究发展计划(批准号:2005CB724404)和教育部创新团队发展计划(批准号:IRT0625)资助的课题.
    [1]

    [1]Lawson A W, Tang T Y 1950 Rev. Sci. Instrum. 21 815

    [2]

    [2]Mao H K, Bell P M 1976 Carnegie Institution of Washington Year Book 75 824

    [3]

    [3]Block S, Forman R A 1977 High Pressure Research: Applications in Geophysics (New York: Academic)p503

    [4]

    [4]Mao H K, Bell P M 1981 Rev. Sci. Instrum. 52 615

    [5]

    [5]Grzybowski T A, Ruoff A L 1984 Phys. Rev. Lett. 53 489

    [6]

    [6]Hemmés H, Driessen A, Kos J, Mul F A, Griessen R 1989 Rev. Sci. Instrum. 60 474

    [7]

    [7]Weir S T, Akella J, Ruddle C A, Vohra Y K, Catledge S A 2000 Appl. Phys. Lett. 77 3400

    [8]

    [8]Jackson D D, Arache R C, Malba V, Weir S T, Catledge S A, Vohra Y K 2003 Rev. Sci. Instrum. 74 2467

    [9]

    [9]Gao C X, Han Y H, Ma Y Z, White A, Liu H W, Luo J F, Li M, He C Y, Hao A M, Huang X W, Pan Y W, Zou G T 2005 Rev. Sci. Instrum. 76 083912

    [10]

    ]Han Y H, Gao C X, Ma Y Z, Liu H W, Pan Y W, Luo J F, Li M, He C Y, Huang X W, Zou G T 2005 Appl. Phys. Lett. 86 064104

    [11]

    ]Luo J F,Tang B C,Gao C X,Li M,Han Y H,Zou G T 2005 Chin. Phys. 14 1223

    [12]

    ]Itkin G, Hearne G R, Sterer E, Pasternak M P, Potzel W 1995 Phys. Rev. B 51 3195

    [13]

    ]Eremets M I, Gregoryanz E A, Struzhkin V V, Mao H K, Hemley R J 2000 Phys. Rev. Lett. 85 2797

    [14]

    ]Hu J Z, Tang R M, Xu J A 1980 Acta Phys.Sin.29 1351(in Chinese)[胡静竹、唐汝明、徐济安 1980 物理学报 29 1351]

    [15]

    ]Jing L Q, Xu Z L, Sun X J 2001 Appl. Surf. Sci. 180 308

    [16]

    ]Chen J, Jin G J, Ma Y Q 2009 Acta Phys. Sin. 58 2707(in Chinese) [陈静、金国钧、马余强 2009 物理学报 58 2707]

    [17]

    ]Sun H, Zhang Q F, Wu J L 2007 Acta Phys.Sin. 56 3479(in Chinese) [孙晖、张琦锋、吴锦雷 2007 物理学报 56 3479]

    [18]

    ]Desgreniers S 1998 Phys. Rev.B 58 14102

    [19]

    ]Karzel H, Potzel W, Kofferlein M, Schiessl W, Steiner M, Hiller U, Kalvius G M 1996 Phys. Rev. B 53 11425

    [20]

    ]Jaffe J E, Hess A C 1993 Phys. Rev. B 48 7903

    [21]

    ]Wickham J N, Herhold A B, Alivisatos A P 2000 Phys. Rev. Lett. 84 923

    [22]

    ]Sans J A, Segura A, Mnajon F J, Mari B, Munoz A, Herrera-Cabrera M J 2005 Microelectron. J. 36 928

    [23]

    ] Dolan G J 1977 Appl. Phys. Lett. 31 337

  • [1]

    [1]Lawson A W, Tang T Y 1950 Rev. Sci. Instrum. 21 815

    [2]

    [2]Mao H K, Bell P M 1976 Carnegie Institution of Washington Year Book 75 824

    [3]

    [3]Block S, Forman R A 1977 High Pressure Research: Applications in Geophysics (New York: Academic)p503

    [4]

    [4]Mao H K, Bell P M 1981 Rev. Sci. Instrum. 52 615

    [5]

    [5]Grzybowski T A, Ruoff A L 1984 Phys. Rev. Lett. 53 489

    [6]

    [6]Hemmés H, Driessen A, Kos J, Mul F A, Griessen R 1989 Rev. Sci. Instrum. 60 474

    [7]

    [7]Weir S T, Akella J, Ruddle C A, Vohra Y K, Catledge S A 2000 Appl. Phys. Lett. 77 3400

    [8]

    [8]Jackson D D, Arache R C, Malba V, Weir S T, Catledge S A, Vohra Y K 2003 Rev. Sci. Instrum. 74 2467

    [9]

    [9]Gao C X, Han Y H, Ma Y Z, White A, Liu H W, Luo J F, Li M, He C Y, Hao A M, Huang X W, Pan Y W, Zou G T 2005 Rev. Sci. Instrum. 76 083912

    [10]

    ]Han Y H, Gao C X, Ma Y Z, Liu H W, Pan Y W, Luo J F, Li M, He C Y, Huang X W, Zou G T 2005 Appl. Phys. Lett. 86 064104

    [11]

    ]Luo J F,Tang B C,Gao C X,Li M,Han Y H,Zou G T 2005 Chin. Phys. 14 1223

    [12]

    ]Itkin G, Hearne G R, Sterer E, Pasternak M P, Potzel W 1995 Phys. Rev. B 51 3195

    [13]

    ]Eremets M I, Gregoryanz E A, Struzhkin V V, Mao H K, Hemley R J 2000 Phys. Rev. Lett. 85 2797

    [14]

    ]Hu J Z, Tang R M, Xu J A 1980 Acta Phys.Sin.29 1351(in Chinese)[胡静竹、唐汝明、徐济安 1980 物理学报 29 1351]

    [15]

    ]Jing L Q, Xu Z L, Sun X J 2001 Appl. Surf. Sci. 180 308

    [16]

    ]Chen J, Jin G J, Ma Y Q 2009 Acta Phys. Sin. 58 2707(in Chinese) [陈静、金国钧、马余强 2009 物理学报 58 2707]

    [17]

    ]Sun H, Zhang Q F, Wu J L 2007 Acta Phys.Sin. 56 3479(in Chinese) [孙晖、张琦锋、吴锦雷 2007 物理学报 56 3479]

    [18]

    ]Desgreniers S 1998 Phys. Rev.B 58 14102

    [19]

    ]Karzel H, Potzel W, Kofferlein M, Schiessl W, Steiner M, Hiller U, Kalvius G M 1996 Phys. Rev. B 53 11425

    [20]

    ]Jaffe J E, Hess A C 1993 Phys. Rev. B 48 7903

    [21]

    ]Wickham J N, Herhold A B, Alivisatos A P 2000 Phys. Rev. Lett. 84 923

    [22]

    ]Sans J A, Segura A, Mnajon F J, Mari B, Munoz A, Herrera-Cabrera M J 2005 Microelectron. J. 36 928

    [23]

    ] Dolan G J 1977 Appl. Phys. Lett. 31 337

  • [1] 姚盼盼, 王玲瑞, 王家祥, 郭海中. 高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质. 物理学报, 2020, 69(21): 218801. doi: 10.7498/aps.69.20200988
    [2] 杜一帅, 康维, 郑瑞伦. 外延石墨烯电导率和费米速度随温度变化规律研究. 物理学报, 2017, 66(1): 014701. doi: 10.7498/aps.66.014701
    [3] 郭宏伟, 刘然, 王玲瑞, 崔金星, 宋波, 王凯, 刘冰冰, 邹勃. 高压下有机-无机杂化钙钛矿CH3NH3PbI3的结构及光学性质研究. 物理学报, 2017, 66(3): 030701. doi: 10.7498/aps.66.030701
    [4] 付志坚, 贾丽君, 夏继宏, 唐可, 李召红, 权伟龙, 陈其峰. 温稠密钛电导率计算. 物理学报, 2016, 65(6): 065201. doi: 10.7498/aps.65.065201
    [5] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安. 硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究. 物理学报, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [6] 丁琨, 武雪飞, 窦秀明, 孙宝权. 电驱动金刚石对顶砧低温连续加压装置. 物理学报, 2016, 65(3): 037701. doi: 10.7498/aps.65.037701
    [7] 吴迪, 赵纪军, 田华. Fe2+取代对MgSiO3钙钛矿高温高压物性的影响. 物理学报, 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [8] 陈云云, 郑改革, 顾芳, 李振华. 尘埃粒子电势对等离子体电导率的影响. 物理学报, 2012, 61(15): 154202. doi: 10.7498/aps.61.154202
    [9] 唐杰, 杨梨容, 王晓军, 张林, 魏成富, 陈擘威, 梅杨. 高压对大块(PrNd)xAl0.6Nb0.5Cu0.15B1.05Fe97.7-x合金微观结构和性能的影响. 物理学报, 2012, 61(24): 240701. doi: 10.7498/aps.61.240701
    [10] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析. 物理学报, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [11] 吴宝嘉, 韩永昊, 彭刚, 金逢锡, 顾广瑞, 高春晓. 金刚石对顶砧中触点位置误差对样品电阻率测量精度的影响(已撤稿). 物理学报, 2011, 60(12): 127203. doi: 10.7498/aps.60.127203
    [12] 蒋吉昊, 王桂吉, 杨 宇. 一种测量金属电爆炸过程中电导率的新方法. 物理学报, 2008, 57(2): 1123-1127. doi: 10.7498/aps.57.1123
    [13] 檀满林, 朱嘉琦, 张化宇, 朱振业, 韩杰才. 硼掺杂对四面体非晶碳膜电导性能的影响. 物理学报, 2008, 57(10): 6551-6556. doi: 10.7498/aps.57.6551
    [14] 杨凤霞, 张端明, 邓宗伟, 姜胜林, 徐 洁, 李舒丹. 基体电导率对0-3型铁电复合材料高压极化行为及损耗的影响. 物理学报, 2008, 57(6): 3840-3845. doi: 10.7498/aps.57.3840
    [15] 全荣辉, 韩建伟, 黄建国, 张振龙. 电介质材料辐射感应电导率的模型研究. 物理学报, 2007, 56(11): 6642-6647. doi: 10.7498/aps.56.6642
    [16] 余云鹏, 林璇英, 林舜辉, 黄 锐. 光照和偏压对微晶硅薄膜室温电导的影响. 物理学报, 2006, 55(4): 2038-2043. doi: 10.7498/aps.55.2038
    [17] 蔡建臻, 朱宏伟, 吴德海, 刘 峰, 吕 力. 单壁碳纳米管微分电导在高压和强磁场下的实验研究. 物理学报, 2006, 55(12): 6585-6588. doi: 10.7498/aps.55.6585
    [18] 邵光杰, 秦秀娟, 刘日平, 王文魁, 姚玉书. 氧化锌纳米晶高压下的晶粒演化和性能. 物理学报, 2006, 55(1): 472-476. doi: 10.7498/aps.55.472
    [19] 徐任信, 陈 文, 周 静. 聚合物电导率对0-3型压电复合材料极化性能的影响. 物理学报, 2006, 55(8): 4292-4297. doi: 10.7498/aps.55.4292
    [20] 石雁祥, 葛德彪, 吴 健. 尘埃粒子充放电过程对尘埃等离子体电导率的影响. 物理学报, 2006, 55(10): 5318-5324. doi: 10.7498/aps.55.5318
计量
  • 文章访问数:  5888
  • PDF下载量:  825
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-08-05
  • 修回日期:  2009-09-11
  • 刊出日期:  2010-03-05

原位高压微米氧化锌电学性质的研究

  • 1. (1)吉林大学超硬材料国家重点实验室,长春 130012; (2)吉林大学超硬材料国家重点实验室,长春 130012;延边大学理学院,延吉 133002
    基金项目: 国家自然科学基金(批准号:10874053,50532020, 50802033)、国家重点基础研究发展计划(批准号:2005CB724404)和教育部创新团队发展计划(批准号:IRT0625)资助的课题.

摘要: 利用集成有金属薄膜电极的金刚石对顶砧,对微米氧化锌样品进行了原位高压电导率测量.结果表明,在919 GPa时样品电导率达到最小值,在919—1122 GPa时样品电导率急剧增大,说明此时样品从纤锌矿结构向岩盐矿结构转变直至完全相变,1122 GPa为相变点.通过测量不同条件下高温退火处理的样品电导率,明显看到氧空位对电导率的影响.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回