搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下缺陷对锐钛矿相TiO2多晶电输运性能的影响: 交流阻抗测量

王月 邵渤淮 陈双龙 王春杰 高春晓

引用本文:
Citation:

高压下缺陷对锐钛矿相TiO2多晶电输运性能的影响: 交流阻抗测量

王月, 邵渤淮, 陈双龙, 王春杰, 高春晓

Effects of defects on electrical transport properties of anatase TiO2 polycrystalline under high pressure: AC impedance measurement

Wang Yue, Shao Bo-Huai, Chen Shuang-Long, Wang Chun-Jie, Gao Chun-Xiao
PDF
HTML
导出引用
  • 采用高压原位阻抗谱测量技术对锐钛矿TiO2多晶的电输运性质进行了系统研究. 在6.4, 11.5和24.6 GPa压力处发现了晶粒和晶界的电阻、参数因子和弛豫频率的反常变化行为. 研究分析表明: 6.4和11.5 GPa压力点分别对应着TiO2由锐钛矿转变为α-PbO2, 再转变为斜锆石的结构相变, 当压力高于24.6 GPa时, TiO2完全转变为斜锆石相. 通过分析晶粒和晶界电阻在压力作用下的变化行为可知, 本征缺陷的存在对TiO2高压下电输运性质的变化起着关键的作用. 在6.4 GPa压力处, 相变的发生导致缺陷的作用发生了变化, 由作为复合中心的深能级缺陷转变为向导带和价带提供载流子的浅能级缺陷, 并且作为浅能级缺陷存在至实验最高压力点38.9 GPa, 浅能级缺陷在能带中的位置也随着相变发生而改变. 晶粒和晶界的激活能随着压力升高而降低, 表明高压下载流子在晶粒和晶界的输运变得更加容易. 此外, TiO2晶粒和晶界的弛豫频率比值随压力的升高而不断减小, 高压下的晶界效应不明显.
    The electrical transport properties of anatase TiO2 polycrystalline have been systematically investigated by using high pressure in-situ impedance spectroscopy measurements. The anomalous behaviors of resistance, parameter factor and relaxation frequency of grain and grain boundary can be found at 6.4, 11.5 and 24.6 GPa. The results indicate that the first two discontinuous points (6.4 and 11.5 GPa) correspond to the phase transitions of TiO2 from anatase to α-PbO2 and then to baddeleyite, respectively. Above 24.6 GPa, TiO2 completely transforms into the baddeleyite phase. Based on the change of grain resistance and grain boundary resistance under pressure, intrinsic defects play a crucial effect in the electrical transport properties of TiO2 at high pressures. At 6.4 GPa, the occurrence of phase transition gives rise to the variation of defects’ role, from a deep energy level defect (as a recombination centre) changes into a shallow energy level defect (providing carriers for the conduction and valence bands). In addition, the position of defect in energy band changes with pressure increasing. The phase transition of TiO2 at 6.4 GPa is the rearrangement of TiO6 octahedron, while the other one at 11.5 GPa can be attributed to the migration of oxygen Schottky defects from inner to surface. Combining the packing factor and relaxation frequency, the electrical transport properties of TiO2 under pressure are revealed, the packing factor and the relaxation frequency are closely related to the mobility and the carrier concentration, respectively. The activation energy of grain and grain boundary decrease with the pressure elevating, indicating that the transport of carriers in grain and grain boundary become easier under pressure, and the former is smoother than the latter owing to the activation energy of grain being smaller than that of grain boundary in the same pressure range. Moreover, the relaxation frequency ratio of TiO2 grain and TiO2 grain boundary decreases with pressure increasing, and the grain boundary effect under high pressure is not obvious.
      通信作者: 王春杰, cjwang@foxmail.com
    • 基金项目: 国家自然科学基金(批准号: 12004050)和辽宁省教育厅项目(批准号: LJKMZ20221493)资助的课题.
      Corresponding author: Wang Chun-Jie, cjwang@foxmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12004050) and the Research Foundation of the Education Department of Liaoning Province, China (Grant No. LJKMZ20221493).
    [1]

    Augustynski J 1993 Electrochim. Acta. 38 43Google Scholar

    [2]

    Pezhooli N, Rahimi J, Hasti F, Maleki A 2022 Sci. Rep. 12 9885Google Scholar

    [3]

    Crossland E J W, Noel N, Sivaram V, Leijtens T, Alexander-Webber J A, Snaith H J 2013 Nature 495 215Google Scholar

    [4]

    Reza K M, Kurny A, Gulshan F 2017 Appl. Water. Sci. 7 1569Google Scholar

    [5]

    韩迪仪, 顾阳, 胡涛政, 董雯, 倪亚贤 2021 物理学报 70 038103Google Scholar

    Han D Y, Gu Y, Hu T Z, Dong W, Ni Y X 2021 Acta Phys. Sin. 70 038103Google Scholar

    [6]

    Liu L, Chan J, Sham T K 2010 J. Phys. Chem. C 114 21353Google Scholar

    [7]

    San-Miguel A 2006 Chem. Soc. Rev. 35 876Google Scholar

    [8]

    Lu X, Yang W, Quan Z, Lin T, Bai L, Wang L, Huang F, Zhao Y 2014 J. Am. Chem. Soc. 136 419Google Scholar

    [9]

    Dong Z, Xiao F, Zhao A, Liu L, Sham T K, Song Y 2016 RSC Adv. 6 76142Google Scholar

    [10]

    Liu F, Dong Z H, Liu L L 2019 J. Phys.: Condens. Matter 31 395403Google Scholar

    [11]

    Huang Y, Chen F, Li X, Yuan Y, Dong H, Samanta S, Zhang J, Yang K 2016 J. Appl. Phys. 119 184Google Scholar

    [12]

    Dong Z H, Song Y 2015 Can. J. Chem. 93 165Google Scholar

    [13]

    Ji T, Gao Y, Qin T, Yue D, Gao C 2021 J. Phys. Chem. C 125 3364Google Scholar

    [14]

    Li Q J, Liu B B 2016 Chin. Phys. B 25 076107Google Scholar

    [15]

    Hearne G R, Zhao J, Dawe A M, Pischedda V, Maaza M, Nieuwoudt M K, Kibasomba P, Nemraoui O, Comins J D, Witcomb M J 2004 Phys. Rev. B 70 134102Google Scholar

    [16]

    Haines J, Leger J M 1993 Physica B 192 233Google Scholar

    [17]

    Kurita S, Ohta S, Sekiya T 2002 High Pressure Res. 22 319Google Scholar

    [18]

    Ohsaka T, Yamaoka S, Shimomura O 1979 Solid State Commun. 30 34Google Scholar

    [19]

    Liu L G, Mernagh T P 1992 Eur. J. Mineral. 4 45Google Scholar

    [20]

    Lagarec K, Desgreniers S 1995 Solid State Commun. 94 519Google Scholar

    [21]

    Sekiya T, Ohta S, Kamei S, Hanakawa M, KuritaS 2001 J. Phys. Chem. Solids 62 717Google Scholar

    [22]

    Arlt T, Bermejo M, Blanco M A, Gerward L, Jiang J Z, Olsen J S, Recio J M 2000 Phys. Rev. B 61 14414Google Scholar

    [23]

    Swamy V, Dubrovinsky L S, Dubrovinskaia N A, Langenhorst F, Simionovici A S, Drakopoulos M, Dmitriev V, Weber H P 2005 Solid State Commun. 134 541Google Scholar

    [24]

    Swamy V, Dubrovinsky L S, Dubrovinskaia N A, Simionovici A S, Drakopoulos M, Dmitriev V, Weber H P 2003 Solid State Commun. 125 111Google Scholar

    [25]

    Swamy V, Kuznetsov A, Dubrovinsky L S, McMillan P F, Prakapenka V B, Shen G, Muddle B C 2006 Phys. Rev. Lett. 96 135702Google Scholar

    [26]

    Li Q, Cheng B, Yang X, Liu R, Zou B 2013 J. Phys. Chem. C 117 8516Google Scholar

    [27]

    Li Q, Cheng B, Tian B, Liu R, Liu B, Wang F, Chen Z, Zou B, Cui T, Liu B 2014 RSC Adv. 4 12873Google Scholar

    [28]

    Wang Q, Wang X, Li J, Qin T, Sang D, Liu J, Ke F, Wang X, Li Y, Liu C 2021 J. Mater. Chem. C 9 4764Google Scholar

    [29]

    Zhang H, Zhang G, Wang J, Wang Q, Liu C 2021 J. Alloys Compd. 857 157482Google Scholar

    [30]

    Su N, Sun M, Wang Q, Jin J, Sui J, Liu C, Gao C 2021 J. Phys. Chem. C 125 2713Google Scholar

    [31]

    王春杰, 王月, 高春晓 2020 物理学报 69 147202Google Scholar

    Wang C J, Wang Y, Gao C X 2020 Acta Phys. Sin. 69 147202Google Scholar

    [32]

    Wang J, Zhang G, Liu H, Wang Q, Shen W, Yan Y, Liu C, Han Y, Gao C 2017 Appl. Phys. Lett. 111 031907Google Scholar

    [33]

    Duan S, Wang Q, Zou B, Jiang J, Liu K, Zhang G, Zhang, Sang D, Xu Z, Geng Y, Li J, Wang X, Li Y, Liu C 2022 Appl. Phys. Lett. 121 263904Google Scholar

    [34]

    Piermarini G J, Block S, Barnett J D, Forman R A, 1975 J. Appl. Phys. 46 2774Google Scholar

    [35]

    曹楚南, 张鉴清 2002 电化学阻抗谱导论 (典藏版 1) (北京: 科学出版社) 第21页

    Cao C N, Zhang J Q 2002 Introduction to Electrochemical Impedance Spectroscopy (Vol. 1) (Beijing: Science Press) p21 (in Chinese)

    [36]

    Guo X, Yoshino T 2013 Earth Planet. Sci. Lett. 369–370 239

    [37]

    Guo X, Yoshino T, Katayama I 2011 Phys. Earth Planet. Inter. 188 69Google Scholar

    [38]

    Rahman A U, Rafiq M A, Maaz K, Karim S, Cho S O, Hasan M M 2012 J. Appl. Phys. 112 063718Google Scholar

    [39]

    Ali H, Karim S, Rafiq M A, Maaz K, Ahmad M 2014 J. Alloys Compd. 612 64Google Scholar

    [40]

    Rahman A U, Rafifiq M A, Hasan M M, Maaz K, Karim S, Cho S O 2013 J. Nanopart Res. 15 1703Google Scholar

    [41]

    Liu J, Yan J, Shi Q, Dong H, Zhang J, Wang Z, Huang W, Chen B, Zhang H 2019 J. Phys. Chem. C 123 4094Google Scholar

    [42]

    Ma X G, Liang P, Miao L, Bie S W, Zhang C K, Xu L, Jiang J J 2009 Phys. Status. Solidi. (b) 246 2132Google Scholar

    [43]

    Sekiya T, Ohta S, Kurita S 2008 Int. J. Mod. Phys. B 15 3952

    [44]

    Zhu T, Gao S P 2014 J. Phys. Chem. C 118 11385Google Scholar

    [45]

    Liu Q J, Zhang N C, Liu F S, Liu Z T 2014 Phys. Scr. 89 075703Google Scholar

    [46]

    Lin X, Wu J, Lu X, Shan Z, Wang W, Huang F 2009 Phys. Chem. Chem. Phys. 11 10047Google Scholar

    [47]

    Wu J, Huang F, Shan Z, Wang Y 2011 Dalton Trans. 40 6906Google Scholar

    [48]

    Keyan H U, Zian X U, Liu Y, Huang F 2020 Chem. Res. Chin. Univ. 36 1102Google Scholar

    [49]

    Plata J J, Márquez A M, Sanz J F 2013 J. Phys. Chem. C 117 14502Google Scholar

    [50]

    Park N G, van de Lagemaa J, Frank A J 2000 J. Phys. Chem. B 104 8989Google Scholar

    [51]

    刘恩科, 朱秉升, 罗晋生 2012 半导体物理学 (第7版) (北京: 电子工业出版社) 第109页

    Liu E K, Zhu B S, Luo J S 2012 The Physics of Semiconductors (Vol. 7) (Beijing: Electronic Industry Press) p109 (in Chinese)

    [52]

    Ohta S, Sekiya T, Kurita S 2001 Phys. Status. Solidi. (b) 223 265Google Scholar

    [53]

    Muscat J, Swamy V, Harrison N M 2002 Phys. Rev. B 65 224112Google Scholar

    [54]

    Wang Q, Lian G, Dickey E C 2004 Acta Mater. 52 809Google Scholar

    [55]

    Bharathi K K, Markandeyulu G, Ramana C V 2011 J. Electrochem. Soc. 158 G71Google Scholar

  • 图 1  TiO2在不同压力下的Nyquist谱图 (a) 4.9—7.6 GPa; (b) 7.6—13.0 GPa; (c) 13.0—20.3 GPa; (d) 20.3—24.6 GPa; (e) 24.6—30.1 GPa; (f) 30.1—38.9 GPa

    Fig. 1.  Nyquist impedance spectra of TiO2 at different pressures: (a) 4.9–7.6 GPa; (b) 7.6–13.0 GPa; (c) 13.0–20.3 GPa; (d) 20.3–24.6 GPa; (e) 24.6–30.1 GPa; (f) 30.1–38.9 GPa.

    图 2  不同压力下TiO2阻抗谱实验和拟合数据对比 (a) 5.4 GPa; (b) 20.3 GPa

    Fig. 2.  Experimental and fitting data for TiO2 impedance spectra at different pressures: (a) 5.4 GPa; (b) 20.3 GPa.

    图 3  TiO2参数因子随压力的变化关系

    Fig. 3.  Pressure dependence of parameter factor for TiO2.

    图 4  TiO2电阻随压力的变化关系

    Fig. 4.  Pressure dependence of resistance for TiO2.

    图 5  TiO2弛豫频率随压力的变化关系

    Fig. 5.  Pressure dependence of the relaxation frequency for TiO2.

    图 6  不同压力区间TiO2缺陷能级分布

    Fig. 6.  Distribution of TiO2 defect energy levels in different pressure intervals.

    表 1  激活能随压力的变化关系

    Table 1.  Pressure dependence of activation energy.

    Pressure region/GPadE/dP/(meV·GPa–1)
    GrainGrain boundary
    0—6.4–11.51–22.79
    6.4—11.5–7.59–9.33
    11.5—24.6–6.16–6.82
    24.6—38.9–3.54–4.91
    下载: 导出CSV
  • [1]

    Augustynski J 1993 Electrochim. Acta. 38 43Google Scholar

    [2]

    Pezhooli N, Rahimi J, Hasti F, Maleki A 2022 Sci. Rep. 12 9885Google Scholar

    [3]

    Crossland E J W, Noel N, Sivaram V, Leijtens T, Alexander-Webber J A, Snaith H J 2013 Nature 495 215Google Scholar

    [4]

    Reza K M, Kurny A, Gulshan F 2017 Appl. Water. Sci. 7 1569Google Scholar

    [5]

    韩迪仪, 顾阳, 胡涛政, 董雯, 倪亚贤 2021 物理学报 70 038103Google Scholar

    Han D Y, Gu Y, Hu T Z, Dong W, Ni Y X 2021 Acta Phys. Sin. 70 038103Google Scholar

    [6]

    Liu L, Chan J, Sham T K 2010 J. Phys. Chem. C 114 21353Google Scholar

    [7]

    San-Miguel A 2006 Chem. Soc. Rev. 35 876Google Scholar

    [8]

    Lu X, Yang W, Quan Z, Lin T, Bai L, Wang L, Huang F, Zhao Y 2014 J. Am. Chem. Soc. 136 419Google Scholar

    [9]

    Dong Z, Xiao F, Zhao A, Liu L, Sham T K, Song Y 2016 RSC Adv. 6 76142Google Scholar

    [10]

    Liu F, Dong Z H, Liu L L 2019 J. Phys.: Condens. Matter 31 395403Google Scholar

    [11]

    Huang Y, Chen F, Li X, Yuan Y, Dong H, Samanta S, Zhang J, Yang K 2016 J. Appl. Phys. 119 184Google Scholar

    [12]

    Dong Z H, Song Y 2015 Can. J. Chem. 93 165Google Scholar

    [13]

    Ji T, Gao Y, Qin T, Yue D, Gao C 2021 J. Phys. Chem. C 125 3364Google Scholar

    [14]

    Li Q J, Liu B B 2016 Chin. Phys. B 25 076107Google Scholar

    [15]

    Hearne G R, Zhao J, Dawe A M, Pischedda V, Maaza M, Nieuwoudt M K, Kibasomba P, Nemraoui O, Comins J D, Witcomb M J 2004 Phys. Rev. B 70 134102Google Scholar

    [16]

    Haines J, Leger J M 1993 Physica B 192 233Google Scholar

    [17]

    Kurita S, Ohta S, Sekiya T 2002 High Pressure Res. 22 319Google Scholar

    [18]

    Ohsaka T, Yamaoka S, Shimomura O 1979 Solid State Commun. 30 34Google Scholar

    [19]

    Liu L G, Mernagh T P 1992 Eur. J. Mineral. 4 45Google Scholar

    [20]

    Lagarec K, Desgreniers S 1995 Solid State Commun. 94 519Google Scholar

    [21]

    Sekiya T, Ohta S, Kamei S, Hanakawa M, KuritaS 2001 J. Phys. Chem. Solids 62 717Google Scholar

    [22]

    Arlt T, Bermejo M, Blanco M A, Gerward L, Jiang J Z, Olsen J S, Recio J M 2000 Phys. Rev. B 61 14414Google Scholar

    [23]

    Swamy V, Dubrovinsky L S, Dubrovinskaia N A, Langenhorst F, Simionovici A S, Drakopoulos M, Dmitriev V, Weber H P 2005 Solid State Commun. 134 541Google Scholar

    [24]

    Swamy V, Dubrovinsky L S, Dubrovinskaia N A, Simionovici A S, Drakopoulos M, Dmitriev V, Weber H P 2003 Solid State Commun. 125 111Google Scholar

    [25]

    Swamy V, Kuznetsov A, Dubrovinsky L S, McMillan P F, Prakapenka V B, Shen G, Muddle B C 2006 Phys. Rev. Lett. 96 135702Google Scholar

    [26]

    Li Q, Cheng B, Yang X, Liu R, Zou B 2013 J. Phys. Chem. C 117 8516Google Scholar

    [27]

    Li Q, Cheng B, Tian B, Liu R, Liu B, Wang F, Chen Z, Zou B, Cui T, Liu B 2014 RSC Adv. 4 12873Google Scholar

    [28]

    Wang Q, Wang X, Li J, Qin T, Sang D, Liu J, Ke F, Wang X, Li Y, Liu C 2021 J. Mater. Chem. C 9 4764Google Scholar

    [29]

    Zhang H, Zhang G, Wang J, Wang Q, Liu C 2021 J. Alloys Compd. 857 157482Google Scholar

    [30]

    Su N, Sun M, Wang Q, Jin J, Sui J, Liu C, Gao C 2021 J. Phys. Chem. C 125 2713Google Scholar

    [31]

    王春杰, 王月, 高春晓 2020 物理学报 69 147202Google Scholar

    Wang C J, Wang Y, Gao C X 2020 Acta Phys. Sin. 69 147202Google Scholar

    [32]

    Wang J, Zhang G, Liu H, Wang Q, Shen W, Yan Y, Liu C, Han Y, Gao C 2017 Appl. Phys. Lett. 111 031907Google Scholar

    [33]

    Duan S, Wang Q, Zou B, Jiang J, Liu K, Zhang G, Zhang, Sang D, Xu Z, Geng Y, Li J, Wang X, Li Y, Liu C 2022 Appl. Phys. Lett. 121 263904Google Scholar

    [34]

    Piermarini G J, Block S, Barnett J D, Forman R A, 1975 J. Appl. Phys. 46 2774Google Scholar

    [35]

    曹楚南, 张鉴清 2002 电化学阻抗谱导论 (典藏版 1) (北京: 科学出版社) 第21页

    Cao C N, Zhang J Q 2002 Introduction to Electrochemical Impedance Spectroscopy (Vol. 1) (Beijing: Science Press) p21 (in Chinese)

    [36]

    Guo X, Yoshino T 2013 Earth Planet. Sci. Lett. 369–370 239

    [37]

    Guo X, Yoshino T, Katayama I 2011 Phys. Earth Planet. Inter. 188 69Google Scholar

    [38]

    Rahman A U, Rafiq M A, Maaz K, Karim S, Cho S O, Hasan M M 2012 J. Appl. Phys. 112 063718Google Scholar

    [39]

    Ali H, Karim S, Rafiq M A, Maaz K, Ahmad M 2014 J. Alloys Compd. 612 64Google Scholar

    [40]

    Rahman A U, Rafifiq M A, Hasan M M, Maaz K, Karim S, Cho S O 2013 J. Nanopart Res. 15 1703Google Scholar

    [41]

    Liu J, Yan J, Shi Q, Dong H, Zhang J, Wang Z, Huang W, Chen B, Zhang H 2019 J. Phys. Chem. C 123 4094Google Scholar

    [42]

    Ma X G, Liang P, Miao L, Bie S W, Zhang C K, Xu L, Jiang J J 2009 Phys. Status. Solidi. (b) 246 2132Google Scholar

    [43]

    Sekiya T, Ohta S, Kurita S 2008 Int. J. Mod. Phys. B 15 3952

    [44]

    Zhu T, Gao S P 2014 J. Phys. Chem. C 118 11385Google Scholar

    [45]

    Liu Q J, Zhang N C, Liu F S, Liu Z T 2014 Phys. Scr. 89 075703Google Scholar

    [46]

    Lin X, Wu J, Lu X, Shan Z, Wang W, Huang F 2009 Phys. Chem. Chem. Phys. 11 10047Google Scholar

    [47]

    Wu J, Huang F, Shan Z, Wang Y 2011 Dalton Trans. 40 6906Google Scholar

    [48]

    Keyan H U, Zian X U, Liu Y, Huang F 2020 Chem. Res. Chin. Univ. 36 1102Google Scholar

    [49]

    Plata J J, Márquez A M, Sanz J F 2013 J. Phys. Chem. C 117 14502Google Scholar

    [50]

    Park N G, van de Lagemaa J, Frank A J 2000 J. Phys. Chem. B 104 8989Google Scholar

    [51]

    刘恩科, 朱秉升, 罗晋生 2012 半导体物理学 (第7版) (北京: 电子工业出版社) 第109页

    Liu E K, Zhu B S, Luo J S 2012 The Physics of Semiconductors (Vol. 7) (Beijing: Electronic Industry Press) p109 (in Chinese)

    [52]

    Ohta S, Sekiya T, Kurita S 2001 Phys. Status. Solidi. (b) 223 265Google Scholar

    [53]

    Muscat J, Swamy V, Harrison N M 2002 Phys. Rev. B 65 224112Google Scholar

    [54]

    Wang Q, Lian G, Dickey E C 2004 Acta Mater. 52 809Google Scholar

    [55]

    Bharathi K K, Markandeyulu G, Ramana C V 2011 J. Electrochem. Soc. 158 G71Google Scholar

  • [1] 陈贝, 邓永和, 祁青华, 高明, 文大东, 王小云, 彭平. 高压下快凝Pd82Si18非晶合金中二十面体结构分析. 物理学报, 2024, 73(2): 026101. doi: 10.7498/aps.72.20231101
    [2] 陈贝, 邓永和, 祁青华, 高明, 文大东, 王小云, 彭平. 高压下快凝Pd82Si18非晶合金中二十面体结构分析. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231101
    [3] 王飞, 李全军, 胡阔, 刘冰冰. 高压导致纳米TiO2形变的电子显微研究. 物理学报, 2023, 72(3): 036201. doi: 10.7498/aps.72.20221656
    [4] 李亚莎, 刘世冲, 刘清东, 夏宇, 胡豁然, 李光竹. 外电场下含有缔合缺陷的ZnO/${\boldsymbol{\beta }}$-Bi2O3界面电学性能. 物理学报, 2022, 71(2): 026801. doi: 10.7498/aps.71.20210635
    [5] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下TiO2纳米线晶粒和晶界性质及电输运行为. 物理学报, 2022, 71(9): 096101. doi: 10.7498/aps.71.20212276
    [6] 李亚莎, 刘世冲, 刘清东, 夏宇, 胡豁然, 李光竹. 外电场下含有缔合缺陷的ZnO/β-Bi2O3界面电学性能研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210635
    [7] 高旭东, 杨得草, 魏雯静, 李公平. 电子束对ZnO和TiO2辐照损伤的模拟计算. 物理学报, 2021, 70(23): 234101. doi: 10.7498/aps.70.20211223
    [8] 李鹏程, 唐重阳, 程亮, 胡永明, 肖湘衡, 陈万平. TiO2纳米粉在水中通过摩擦还原CO2. 物理学报, 2021, 70(21): 214601. doi: 10.7498/aps.70.20210210
    [9] 姚盼盼, 王玲瑞, 王家祥, 郭海中. 高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质. 物理学报, 2020, 69(21): 218801. doi: 10.7498/aps.69.20200988
    [10] 王春杰, 王月, 高春晓. 高压下纳米晶ZnS晶粒和晶界性质及相变机理. 物理学报, 2020, 69(14): 147202. doi: 10.7498/aps.69.20200240
    [11] 王少霞, 赵旭才, 潘多桥, 庞国旺, 刘晨曦, 史蕾倩, 刘桂安, 雷博程, 黄以能, 张丽丽. 过渡金属(Cr, Mn, Fe, Co)掺杂对TiO2磁性影响的第一性原理研究. 物理学报, 2020, 69(19): 197101. doi: 10.7498/aps.69.20200644
    [12] 王春杰, 王月, 高春晓. 高压下金红石相TiO2的晶界电学性质. 物理学报, 2019, 68(20): 206401. doi: 10.7498/aps.68.20190630
    [13] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究. 物理学报, 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [14] 张品亮, 龚自正, 姬广富, 刘崧. α-Ti2Zr高压物性的第一性原理计算研究. 物理学报, 2013, 62(4): 046202. doi: 10.7498/aps.62.046202
    [15] 吴迪, 赵纪军, 田华. Fe2+取代对MgSiO3钙钛矿高温高压物性的影响. 物理学报, 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [16] 吕晓静, 翁春生, 李宁. 高压环境下1.58 μm波段CO2吸收光谱特性分析. 物理学报, 2012, 61(23): 234205. doi: 10.7498/aps.61.234205
    [17] 邓杨, 王如志, 徐利春, 房慧, 严辉. 立方(Ba0.5Sr0.5)TiO3高压诱导带隙变化的第一性原理研究. 物理学报, 2011, 60(11): 117309. doi: 10.7498/aps.60.117309
    [18] 冯志芳, 刘荣鹃, 李志远. 十二重准晶中的方向缺陷. 物理学报, 2009, 58(3): 1948-1953. doi: 10.7498/aps.58.1948
    [19] 邵光杰, 秦秀娟, 刘日平, 王文魁, 姚玉书. 氧化锌纳米晶高压下的晶粒演化和性能. 物理学报, 2006, 55(1): 472-476. doi: 10.7498/aps.55.472
    [20] 王海燕, 刘日平, 马明臻, 高 明, 姚玉书, 王文魁. FeSi2合金在高压下的凝固. 物理学报, 2004, 53(7): 2378-2383. doi: 10.7498/aps.53.2378
计量
  • 文章访问数:  1348
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-04
  • 修回日期:  2023-04-05
  • 上网日期:  2023-04-14
  • 刊出日期:  2023-06-20

/

返回文章
返回