搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

α-Ti2Zr高压物性的第一性原理计算研究

张品亮 龚自正 姬广富 刘崧

引用本文:
Citation:

α-Ti2Zr高压物性的第一性原理计算研究

张品亮, 龚自正, 姬广富, 刘崧

First-principles study of high-pressure physical properties of α-Ti2Zr

Zhang Pin-Liang, Gong Zi-Zheng, Ji Guang-Fu, Liu Song
PDF
导出引用
  • 基于密度泛函理论的第一性原理计算获得了α-Ti2Zr的晶体结构、弹性常数、德拜温度和电子分布情况, 研究了它们与压力的关系. 计算得到的晶体结构参数与实验值一致. 运用有限应变方法计算得到了α-Ti2Zr的体积模量B、剪切模量G、杨氏模量E和泊松比σ. B和E的零压值分别为101.2和35.6 GPa. G/B的值较小, 并且随着压力的增加而减小, 表明α-Ti2Zr具有优异的延展性. 基于弹性常数得到平均声速, 从而获得了德拜温度Θ=321.7 K. 通过解Christoffel方程获得的压缩波和剪切波数据揭示α-Ti2Zr具有较强的各向异性. 此外, 压力诱导电子从s轨道到d轨道的转移说明在一定压力下α-Ti2Zr将转变为β相.
    The structure, elastic constant, Debey temperature and electron distribution of α-Ti2Zr under high pressure are presented by using first-principles pseudopotential method based on density functional theory in this paper. The calculated structural parameters at zero pressure are in agreement with experimental values. The elastic constants and their pressure dependence are calculated using the static finite strain technique. We obtain the bulk modulus, Young’s modulus and Poisson’s ratio for α-Ti2Zr. The G and B at zero pressure are 101.2 and 35.6 GPa, respectively. The G/B value is relatively small and decreases with pressure increasing, showing that the α-Ti2Zr is rather ductile. The Debye temperature Θ=321.7 K is obtained by the average sound velocity based on elastic constants. We investigate anisotropies of the compressional wave and two shear waves. The acoustic velocities are obtained from elastic constants by solving Christoffel equation. The results indicate the strong anisotropy for α-Ti2Zr. Moreover, the pressure dependence of s→d electron transfer indicates that β-Ti2Zr will occur under high pressure.
    • 基金项目: 国家重点基础研究发展计划(批准号:2010CB731600)和国家国防科工局空间碎片专项(批准号:KJSP06209,KJSP06210)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2010CB731600) and the Specialized Research Project for the Protection Against Space Debris of China (Grant Nos. KJSP06209, KJSP06210).
    [1]

    Vohra Y K, Spencer P T 2001 Phys. Rev. Lett. 86 3068

    [2]

    Murray J L 1981 Bulletin of Alloys Phase Diagrams 2 197

    [3]

    Chatterji D, Hepworth M T, Hruska S J 1971 Metall. Trans. 2 1271

    [4]

    Liu W, Li B S, Wang L P, Zhang J Z, Zhao Y S 2007 Phys. Rew. B 76 144107

    [5]

    Hao Y J, Zhang L, Chen X R, Li Y H, He H L 2008 Solid State Commun. 146 105

    [6]

    Mei Z G, Shang S L, Wang Y, Liu Z K 2009 Phys. Rev. B 79 134102

    [7]

    Errandonea D, Meng Y, Somayazulu M, Häusermann D 2005 Physica B 355 116

    [8]

    Kerley G I 2003 Sandia Report, Sand 2003-3785

    [9]

    Hao Y J, Zhu J, Zhang L, Qu J Y, Ren H S 2010 Solid State Commun. 12 1473

    [10]

    Wang B T, Zhang P, Liu H Y, Li W D, Zhang P 2011 J. Appl. Phys. 109 063514

    [11]

    Hao Y J, Zhang L, Chen X R, Li Y H, He H L 2008 J. Phys.: Condens. Mat. 20 235230

    [12]

    Liu W, Li B S, Wang L P, Zhang J Z, Zhao Y S 2008 J. Appl. Phys. 104 076102

    [13]

    Xia H, Duclos S J, Ruoff A L, Vohra Y K 1990 Phys. Rev. Lett. 64 204

    [14]

    Zhang S H, Zhu Y, Zhang X Y, Zhang S L, Qi L, Liu R P 2010 Comput. Mat. Sci. 50 179

    [15]

    Bashkin I O, Fedotov V K, Nefedova M V, Tissen V G, Ponyatovsky E G, Schiwek A, Holzapfel W B 2003 Phys. Rev. B 68 054401

    [16]

    Wang B T, Li W D, Zhang P 2012 J. Nucl. Mater. 420 501

    [17]

    Dolukhanyan S K, Aleksanyan A G, Ter-Galstyan O P, Shekhtman V S, Sakharov M K, Abrosimova G E 2007 Russ. J. Phys. Chem. B 1 563

    [18]

    Shekhtman V S, Dolukhanyan S K, Aleksanyan A G, Mayilyan D G, Ter-Galstyan O P, Sakharov M K, Khasanov S S 2010 Int. J. Self-Propag. High-Temp Synth. 19 40

    [19]

    Swainson I P, Dolukanyan S K, Aleksanyan A G, Shekhtman V S, Mayilyan D G, Yonkeu A L 2010 Can. J. Phys. 88 741

    [20]

    Xu G L, Chen J D, Chen D, Ma J Z, Yu B H, Shi D H 2009 Chin. Phys. B 18 0744

    [21]

    Hao A M, Zhou T J, Zhu Y, Zhang X Y, Liu R P 2011 Chin. Phys. B 20 047103

    [22]

    Li D H, Su W J, Zhu X L 2012 Acta Phys. Sin. 61 023103 (in Chinese) [李德华, 苏文晋, 朱晓玲 2012 物理学报 61 023103]

    [23]

    Wang B, Liu Y, Ye J W 2012 Acta Phys. Sin. 61 186501 (in Chinese) [王斌, 刘颖, 叶金文 2012 物理学报 61 186501]

    [24]

    Chen Z J 2012 Acta Phys. Sin. 61 177104 (in Chinese) [陈中钧 2012 物理学报 61 177104]

    [25]

    Zhu J, Yu J X, Wang Y J, Chen X R, Jing F Q 2008 Chin. Phys. B 17 2216

    [26]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Mat. 14 2717

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [28]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [29]

    Nye J F 1957 Physical Properties of Crystals (London: Oxford University Press)

    [30]

    Watt J P, Peselnick L 1980 J. Appl. Phys. 51 1525

    [31]

    Hill R 1952 Proc. Phys. Soc. 65 350

    [32]

    Long R, Dai Y, Jin H, Huang B B 2008 Res. Lett. Phys. 2008 293517

    [33]

    Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244

    [34]

    Antonov V, Iordanova I 2009 AIP Conf. Proc. 1203 1149

    [35]

    Accelrys Software Inc. 2010 Materials Studio Release Notes (Release 5.5) (Scan Diego: Accelrys Software Inc.)

    [36]

    Born M 1940 Proc. Cambridge Philos. Soc. 36 160

    [37]

    Sin’ko G V, Smirnov N A 2002 J. Phys.: Condens. Mat. 14 6989

    [38]

    Tang W H, Zhang R Q 1999 Equation of State Theory and Calculation Conspectus (Changsha: National University of Defense Technology Press) p321(in Chinese) [汤文辉, 张若棋 1999物态方程理论及计算概论 (长沙: 国防科技大学出版社) 第321页]

    [39]

    Pugh S F 1954 Philos. Mag. 45 823

    [40]

    Auld M A 1973 Acoustic Fields and Waves in Solids (Vol. I) (New York: Wiley)

    [41]

    Steinle-Neumann G, Stixrude L, Cohen R E 1999 Phys. Rev. B 60 791

    [42]

    Born M, Huang K 1954 Dynamical Theory of Crystal Lattices (Clarendon: Oxford)

    [43]

    Anderson O L 1963 J. Phys. Chem. Solids 24 909

    [44]

    Schreiber E, Anderson O L, Soga N 1973 Elastic Constants and Their Measurements (New York: McGraw-Hill)

    [45]

    Skriver H L 1985 Phys. Rev. B 31 909

    [46]

    Mulliken R S 1955 J. Chem. Phys. 23 1833

    [47]

    Vohra Y K, Sikka S K, Holzapfel W B 1983 J. Phys. F: Met. Phys. 13 L107

    [48]

    Zhang P L, Gong Z Z, Ji G F 2012 Proceedings of 20th International Conference on Composites Engineering Beijing, China, July 22-28, 2012

  • [1]

    Vohra Y K, Spencer P T 2001 Phys. Rev. Lett. 86 3068

    [2]

    Murray J L 1981 Bulletin of Alloys Phase Diagrams 2 197

    [3]

    Chatterji D, Hepworth M T, Hruska S J 1971 Metall. Trans. 2 1271

    [4]

    Liu W, Li B S, Wang L P, Zhang J Z, Zhao Y S 2007 Phys. Rew. B 76 144107

    [5]

    Hao Y J, Zhang L, Chen X R, Li Y H, He H L 2008 Solid State Commun. 146 105

    [6]

    Mei Z G, Shang S L, Wang Y, Liu Z K 2009 Phys. Rev. B 79 134102

    [7]

    Errandonea D, Meng Y, Somayazulu M, Häusermann D 2005 Physica B 355 116

    [8]

    Kerley G I 2003 Sandia Report, Sand 2003-3785

    [9]

    Hao Y J, Zhu J, Zhang L, Qu J Y, Ren H S 2010 Solid State Commun. 12 1473

    [10]

    Wang B T, Zhang P, Liu H Y, Li W D, Zhang P 2011 J. Appl. Phys. 109 063514

    [11]

    Hao Y J, Zhang L, Chen X R, Li Y H, He H L 2008 J. Phys.: Condens. Mat. 20 235230

    [12]

    Liu W, Li B S, Wang L P, Zhang J Z, Zhao Y S 2008 J. Appl. Phys. 104 076102

    [13]

    Xia H, Duclos S J, Ruoff A L, Vohra Y K 1990 Phys. Rev. Lett. 64 204

    [14]

    Zhang S H, Zhu Y, Zhang X Y, Zhang S L, Qi L, Liu R P 2010 Comput. Mat. Sci. 50 179

    [15]

    Bashkin I O, Fedotov V K, Nefedova M V, Tissen V G, Ponyatovsky E G, Schiwek A, Holzapfel W B 2003 Phys. Rev. B 68 054401

    [16]

    Wang B T, Li W D, Zhang P 2012 J. Nucl. Mater. 420 501

    [17]

    Dolukhanyan S K, Aleksanyan A G, Ter-Galstyan O P, Shekhtman V S, Sakharov M K, Abrosimova G E 2007 Russ. J. Phys. Chem. B 1 563

    [18]

    Shekhtman V S, Dolukhanyan S K, Aleksanyan A G, Mayilyan D G, Ter-Galstyan O P, Sakharov M K, Khasanov S S 2010 Int. J. Self-Propag. High-Temp Synth. 19 40

    [19]

    Swainson I P, Dolukanyan S K, Aleksanyan A G, Shekhtman V S, Mayilyan D G, Yonkeu A L 2010 Can. J. Phys. 88 741

    [20]

    Xu G L, Chen J D, Chen D, Ma J Z, Yu B H, Shi D H 2009 Chin. Phys. B 18 0744

    [21]

    Hao A M, Zhou T J, Zhu Y, Zhang X Y, Liu R P 2011 Chin. Phys. B 20 047103

    [22]

    Li D H, Su W J, Zhu X L 2012 Acta Phys. Sin. 61 023103 (in Chinese) [李德华, 苏文晋, 朱晓玲 2012 物理学报 61 023103]

    [23]

    Wang B, Liu Y, Ye J W 2012 Acta Phys. Sin. 61 186501 (in Chinese) [王斌, 刘颖, 叶金文 2012 物理学报 61 186501]

    [24]

    Chen Z J 2012 Acta Phys. Sin. 61 177104 (in Chinese) [陈中钧 2012 物理学报 61 177104]

    [25]

    Zhu J, Yu J X, Wang Y J, Chen X R, Jing F Q 2008 Chin. Phys. B 17 2216

    [26]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Mat. 14 2717

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [28]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [29]

    Nye J F 1957 Physical Properties of Crystals (London: Oxford University Press)

    [30]

    Watt J P, Peselnick L 1980 J. Appl. Phys. 51 1525

    [31]

    Hill R 1952 Proc. Phys. Soc. 65 350

    [32]

    Long R, Dai Y, Jin H, Huang B B 2008 Res. Lett. Phys. 2008 293517

    [33]

    Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244

    [34]

    Antonov V, Iordanova I 2009 AIP Conf. Proc. 1203 1149

    [35]

    Accelrys Software Inc. 2010 Materials Studio Release Notes (Release 5.5) (Scan Diego: Accelrys Software Inc.)

    [36]

    Born M 1940 Proc. Cambridge Philos. Soc. 36 160

    [37]

    Sin’ko G V, Smirnov N A 2002 J. Phys.: Condens. Mat. 14 6989

    [38]

    Tang W H, Zhang R Q 1999 Equation of State Theory and Calculation Conspectus (Changsha: National University of Defense Technology Press) p321(in Chinese) [汤文辉, 张若棋 1999物态方程理论及计算概论 (长沙: 国防科技大学出版社) 第321页]

    [39]

    Pugh S F 1954 Philos. Mag. 45 823

    [40]

    Auld M A 1973 Acoustic Fields and Waves in Solids (Vol. I) (New York: Wiley)

    [41]

    Steinle-Neumann G, Stixrude L, Cohen R E 1999 Phys. Rev. B 60 791

    [42]

    Born M, Huang K 1954 Dynamical Theory of Crystal Lattices (Clarendon: Oxford)

    [43]

    Anderson O L 1963 J. Phys. Chem. Solids 24 909

    [44]

    Schreiber E, Anderson O L, Soga N 1973 Elastic Constants and Their Measurements (New York: McGraw-Hill)

    [45]

    Skriver H L 1985 Phys. Rev. B 31 909

    [46]

    Mulliken R S 1955 J. Chem. Phys. 23 1833

    [47]

    Vohra Y K, Sikka S K, Holzapfel W B 1983 J. Phys. F: Met. Phys. 13 L107

    [48]

    Zhang P L, Gong Z Z, Ji G F 2012 Proceedings of 20th International Conference on Composites Engineering Beijing, China, July 22-28, 2012

  • [1] 田城, 蓝剑雄, 王苍龙, 翟鹏飞, 刘杰. BaF 2高压相变行为的第一性原理研究. 物理学报, 2022, 71(1): 017102. doi: 10.7498/aps.71.20211163
    [2] 田城, 蓝剑雄, 王苍龙, 翟鹏飞, 刘杰. BaF2高压相变行为的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211163
    [3] 时旭含, 李海燕, 姚震, 刘冰冰. Ca5N4高压新相的第一性原理研究. 物理学报, 2020, 69(6): 067101. doi: 10.7498/aps.69.20191808
    [4] 王春杰, 王月, 高春晓. 高压下金红石相TiO2的晶界电学性质. 物理学报, 2019, 68(20): 206401. doi: 10.7498/aps.68.20190630
    [5] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算. 物理学报, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [6] 段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田. 高压下富氢化合物的结构与奇异超导电性. 物理学报, 2017, 66(3): 036102. doi: 10.7498/aps.66.036102
    [7] 董家君, 姚明光, 刘世杰, 刘冰冰. 高压下准一维纳米结构的研究. 物理学报, 2017, 66(3): 039101. doi: 10.7498/aps.66.039101
    [8] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究. 物理学报, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [9] 濮春英, 王丽, 吕林霞, 于荣梅, 何朝政, 卢志文, 周大伟. NbSi2奇异高压相及其热力学性质的第一性原理研究. 物理学报, 2015, 64(8): 087103. doi: 10.7498/aps.64.087103
    [10] 侯清玉, 赵春旺. 第一性原理研究钨掺杂对锐钛矿物性的影响. 物理学报, 2015, 64(24): 247201. doi: 10.7498/aps.64.247201
    [11] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算. 物理学报, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [12] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究. 物理学报, 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [13] 吴迪, 赵纪军, 田华. Fe2+取代对MgSiO3钙钛矿高温高压物性的影响. 物理学报, 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [14] 王海燕, 历长云, 高洁, 胡前库, 米国发. 高压下TiAl3结构及热动力学性质的第一性原理研究. 物理学报, 2013, 62(6): 068105. doi: 10.7498/aps.62.068105
    [15] 吕晓静, 翁春生, 李宁. 高压环境下1.58 μm波段CO2吸收光谱特性分析. 物理学报, 2012, 61(23): 234205. doi: 10.7498/aps.61.234205
    [16] 周大伟, 卢成, 李根全, 宋金璠, 宋玉玲, 包刚. 高压下金属Ba的结构稳定性以及热动力学的第一原理研究. 物理学报, 2012, 61(14): 146301. doi: 10.7498/aps.61.146301
    [17] 陈中钧. 高压下MgS的弹性性质、电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(17): 177104. doi: 10.7498/aps.61.177104
    [18] 明星, 王小兰, 杜菲, 陈岗, 王春忠, 尹建武. 菱铁矿FeCO3高压相变与性质的第一性原理研究. 物理学报, 2012, 61(9): 097102. doi: 10.7498/aps.61.097102
    [19] 邓杨, 王如志, 徐利春, 房慧, 严辉. 立方(Ba0.5Sr0.5)TiO3高压诱导带隙变化的第一性原理研究. 物理学报, 2011, 60(11): 117309. doi: 10.7498/aps.60.117309
    [20] 梁拥成, 郭万林, 方 忠. 过渡金属化合物OsB2与OsO2低压缩性的第一性原理计算研究. 物理学报, 2007, 56(8): 4847-4855. doi: 10.7498/aps.56.4847
计量
  • 文章访问数:  4544
  • PDF下载量:  676
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-10
  • 修回日期:  2012-10-29
  • 刊出日期:  2013-02-05

α-Ti2Zr高压物性的第一性原理计算研究

  • 1. 西南交通大学材料科学与工程学院, 材料先进技术教育部重点实验室, 成都 610031;
  • 2. 北京卫星环境工程研究所, 可靠性与环境工程技术国防科技重点实验室, 北京 100094;
  • 3. 中国工程物理研究院流体物理研究所, 冲击波物理与爆轰物理国防科技重点实验室, 绵阳 621900
    基金项目: 国家重点基础研究发展计划(批准号:2010CB731600)和国家国防科工局空间碎片专项(批准号:KJSP06209,KJSP06210)资助的课题.

摘要: 基于密度泛函理论的第一性原理计算获得了α-Ti2Zr的晶体结构、弹性常数、德拜温度和电子分布情况, 研究了它们与压力的关系. 计算得到的晶体结构参数与实验值一致. 运用有限应变方法计算得到了α-Ti2Zr的体积模量B、剪切模量G、杨氏模量E和泊松比σ. B和E的零压值分别为101.2和35.6 GPa. G/B的值较小, 并且随着压力的增加而减小, 表明α-Ti2Zr具有优异的延展性. 基于弹性常数得到平均声速, 从而获得了德拜温度Θ=321.7 K. 通过解Christoffel方程获得的压缩波和剪切波数据揭示α-Ti2Zr具有较强的各向异性. 此外, 压力诱导电子从s轨道到d轨道的转移说明在一定压力下α-Ti2Zr将转变为β相.

English Abstract

参考文献 (48)

目录

    /

    返回文章
    返回