搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下快凝Pd82Si18非晶合金中二十面体结构分析

陈贝 邓永和 祁青华 高明 文大东 王小云 彭平

引用本文:
Citation:

高压下快凝Pd82Si18非晶合金中二十面体结构分析

陈贝, 邓永和, 祁青华, 高明, 文大东, 王小云, 彭平

Analysis of icosahedral structure in rapidly solidified Pd82Si18 amorphous alloy under high pressure

Chen Bei, Deng Yong-He, Qi Qing-Hua, Gao Ming, Wen Da-Dong, Wang Xiao-Yun, Peng Ping
PDF
HTML
导出引用
  • 采用分子动力学方法对6种不同压强下Pd82Si18高温熔体快速凝固形成非晶固体的过程进行模拟, 并采用团簇类型指数法和逆向追踪法对其进行微结构特征和遗传演化分析. 研究结果表明: 加压能够提高体系的玻璃转变温度, 在高压条件下, 凝固形成的结构中存在大量的二十面体, 中心原子为Pd的二十面体与中心原子为Si的二十面体更易形成嵌套共享联结中程序. 遗传分析结果表明加压有利于提高团簇的遗传起始温度和遗传分数, 以Si原子为中心的团簇比以Pd为中心的团簇具有更强的遗传能力, 对玻璃形成能力的影响更大.
    Compared with traditional glass, metallic glass (MG) has excellent properties, such as high strength, high hardness, high fracture toughness, good soft magnetic properties and corrosion resistance due to its unique structure. Such properties enable it to be used in optics, electronics, construction and other fields, making it a highly promising new material with great application potential. As the properties of amorphous alloys are closely linked with their local structures, microstructure characteristics have always been a research focus in the amorphous field. Previous studies show that the onset temperature of heredity and the hereditary fraction of characteristic clusters can be used to effectively evaluate the glass-forming ability. In order to obtain the relationship between the microstructure characteristic and cluster evolution of amorphous alloy, and reveal the formation of glass, the glass transition processes of the Pd82Si18 alloy under different pressure conditions are simulated by using the molecular dynamics method, and the heredity and evolution of the Pd82Si18 amorphous alloy are analyzed by using the cluster-type index method and the reverse tracking method. The simulation results show that the glass transition temperature of the Pd82Si18 alloy can be increased when the pressure is higher, and a large number of icosahedra are formed in the solidified alloy when the pressure is sufficiently high. Icosahedron is a kind of structure that widely exists in amorphous materials and has been studied for quite a long time. In this work, a detailed comparative analysis of two icosahedra is conducted and the heritability of clusters with different chemical compositions under high pressure is studied. The results show that it is easier for icosahedra with central atom Pd and those with central atom Si to form a medium-range order in the Pd82Si18 amorphous alloy. An increase in pressure conduces to the increase of both onset temperature of heredity and hereditary fraction. Combined with the results of cluster heredity analysis at 0 GPa, the Si-centered clusters have stronger heritability than Pd-centered clusters, thus the former ones have a greater influence on the glass-forming ability. These findings are of significance in understanding the relationship between microstructure evolution and glass formation, and also providing certain guidance for designing amorphous alloys.
      通信作者: 邓永和, dengyonghe1@163.com ; 王小云, wxyyun@163.com
    • 基金项目: 国家自然科学基金 (批准号: 51701071)、湖南省自然科学基金 (批准号: 2022JJ50115, 2021JJ30179)和湖南省教育厅科学研究项目(批准号: 22A0522) 资助的课题.
      Corresponding author: Deng Yong-He, dengyonghe1@163.com ; Wang Xiao-Yun, wxyyun@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51701071), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2022JJ50115, 2021JJ30179), and the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 22A0522).
    [1]

    Chen M W 2011 NPG Asia Mater. 3 82Google Scholar

    [2]

    Jiang H R, Bochtler B, Riegler S S, Wei X S, Neuber N, Frey M, Gallino I, Busch R, Shen J 2020 J. Alloys Compd. 844 156126Google Scholar

    [3]

    Hua N B, Chen W Z 2017 J. Alloys Compd. 693 816Google Scholar

    [4]

    Li H X, Lu Z C, Wang S L, Wu Y, Lu Z P 2019 Prog. Mater. Sci. 103 235Google Scholar

    [5]

    Yang Y J, Cheng B Y, Lv J W, Li B, Ma M Z, Zhang X Y, Li G, Liu R P 2019 Mater. Sci. Eng., A 746 229Google Scholar

    [6]

    Wang C J, He A N, Wang A D, Pang J, Liang X F, Li Q F, Chang C T, Qiu K Q, Wang X M 2017 Intermetallics 84 142Google Scholar

    [7]

    Jin Z S, Yang Y J, Zhang Z P, Ma X Z, Lv J W, Wang F L, Ma M Z, Zhang X Y, Liu R P 2019 J. Alloys Compd. 806 668Google Scholar

    [8]

    Liu S, Wang L F, Ge J C, Wu Z D, Ke Y B, Li Q, Sun B A, Feng T, Wu Y, Wang J T, Hahn H, Ren Y, Almer J D, Wang X L, Lan S 2020 Acta Mater. 200 42Google Scholar

    [9]

    Li F C, Liu T, Zhang J Y, Shuang S, Wang Q, Wang A D, Wang J G, Yang Y 2019 Mater. Today Adv. 4 100027Google Scholar

    [10]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. , R 44 45Google Scholar

    [11]

    Miracle D B, Senkov O N 2017 Acta Mater. 122 448Google Scholar

    [12]

    Abrosimova G E, Aronin A S 2017 Phys. Solid State 59 2248Google Scholar

    [13]

    Zhu L, Wang H, Wang Y C, Ma Y M, Cui Q L, Ma Y M, Zhou G T 2011 Phys. Rev. Lett. 106 145501Google Scholar

    [14]

    Sergueeva A V, Song C, Valiev R Z, Mukherjee A K 2003 Mater. Sci. Eng., A 339 159Google Scholar

    [15]

    Bazlov A I, Parkhomenko M S, Ubyivovk E V, Zanaeva E N, Gunderov D V, Louzguine-Luzgin D V 2022 J. Non-Cryst. Solids 576 121220Google Scholar

    [16]

    Galimzyanov B N, Doronina M A, Mokshin A V 2021 J. Non-Cryst. Solids 572 121102Google Scholar

    [17]

    Faruq M, Villesuzanne A, Shao G 2018 J. Non-Cryst. Solids 487 72Google Scholar

    [18]

    Hua D P, Ye W T, Jia Q, Zhou Q, Xia Q S, Shi J Q, Deng Y Y, Wang H F 2020 Appl. Surf. Sci. 511 145545Google Scholar

    [19]

    Barmpalexis P, Karagianni A, Katopodis K, Vardaka E, Kachrimanis K 2019 Eur. J. Pharm. Sci. 130 260Google Scholar

    [20]

    Verlet L 1967 Phys. Rev. 159 20Google Scholar

    [21]

    Sheng H W https:\\sites.google.com/site/eampotentials/ table/PdSi [2023-9-03

    [22]

    Ojovan M I, Louzguine-Luzgin D V 2020 J. Phys. Chem. B 124 3186Google Scholar

    [23]

    Deng Y H, Wen D D, Li Y, Liu J, Peng P 2018 Philos. Mag. 98 2861Google Scholar

    [24]

    Zheng K F, Branicio P S 2020 Phys. Rev. Mater. 4 076001Google Scholar

    [25]

    Suzuki K, Hayashi N, Tomizuka Y, Fukunaga T, Kai K, Watanabe N 1984 J. Non-Cryst. Solids 61 637Google Scholar

    [26]

    Wen D D, Deng Y H, Liu J, Tian Z A, Peng P 2017 Comput. Mater. Sci. 140 275Google Scholar

    [27]

    Liu R S, Liu H R, Dong K J, Hou Z Y, Tian Z A, Peng P, Yu A B 2009 J. Non-Cryst. Solids 355 541Google Scholar

    [28]

    Liu R S, Dong K J, Li J Y, Yu A B, Zou R P 2005 J. Non-Cryst. Solids 351 612Google Scholar

    [29]

    Wen D D, Deng Y H, Gao M, Tian Z A 2021 Chin. Phys. B 30 076101Google Scholar

    [30]

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Li W, Liu R S 2015 J. Non-Cryst. Solids 427 199Google Scholar

  • 图 1  Pd82Si18合金300 K时双体分布函数 (a) 不同压强下的总双体分布函数; (b) 0 GPa时总双体分布函数和偏双体分布函数

    Fig. 1.  Pair distribution functions (PDFs) for Pd82Si18 alloy at 300 K: (a) Total PDFs under different pressures; (b) total PDFs and partial PDFs at 0 GPa.

    图 2  不同压强下快凝Pd82Si18合金平均原子总能随温度的变化及不同压强下体系的玻璃转变温度

    Fig. 2.  Temperature dependent variation of total energy per atom for rapidly solidified Pd82Si18 alloy and the glass transition temperature under different pressures.

    图 3  不同压强300 K时典型团簇数目

    Fig. 3.  Number of typical clusters at 300 K under different pressures.

    图 4  (a) 不同压强下300 K时典型团簇中以Pd, Si为中心的团簇数目; (b) 0 GPa团簇示例

    Fig. 4.  (a)The number of Pd-centered and Si-centered clusters in typical clusters at 300 K under different pressures; (b) cluster examples at 0 GPa.

    图 5  不同压强300 K时二十面体不同化学组分团簇数目 (a) (12 12/1551); (b) (12 2/1441 8/1551 2/1661); (c) 50 GPa团簇示例

    Fig. 5.  The number of clusters of different chemical components of the icosahedra at 300 K under different pressures: (a) (12 12/1551); (b) (12 2/1441 8/1551 2/1661); (c) cluster examples at 50 GPa.

    图 6  0 GPa典型团簇快凝过程的阶段遗传分数

    Fig. 6.  The fraction of staged heredity of typical clusters during rapid solidification at 0 GPa.

    图 7  不同构型二十面体20—50 GPa下快凝过程的阶段遗传分数 (a) (12 12/1551); (b) (12 2/1441 8/1551 2/1661)

    Fig. 7.  The fraction of staged heredity of different configurations icosahedrons during rapid solidification under 20–50 GPa: (a) (12 12/1551); (b) (12 2/1441 8/1551 2/1661).

    图 8  50 GPa快凝过程中Pd11Si2-Pd和Pd12Si1-Si配位原子与中心原子的距离变化

    Fig. 8.  Variation of distance between coordination atoms and central atoms of Pd11Si2-Pd and Pd12Si1-Si during rapid solidification at 50 GPa.

    图 9  50 GPa 300 K时采用不同联结方式形成扩展团簇两个(12 12/1551)中心之间距离分布

    Fig. 9.  The distributions of the distance between two (12 12/1551) centers adopting each type of connection at 300 K under 50 GPa.

    图 10  不同压强300 K以VS, ES, FS, IS方式联结形成的扩展团簇数目 (a) (12 12/1551); (b) (12 2/1441 8/1551 2/1661)

    Fig. 10.  The number of extended clusters formed by linking in the manner of VS, ES, FS, IS at 300 K under different pressures: (a) (12 12/1551); (b) (12 2/1441 8/1551 2/1661).

    图 11  不同压强二十面体中心原子以Pd—Pd, Pd—Si, Si—Si相连形成的IMRO数目 (a) (12 12/1551); (b) (12 2/1441 8/1551 2/1661)

    Fig. 11.  The number of IMRO formed by the icosahedral center atoms connected by Pd—Pd, Pd—Si, and Si—Si under different pressures: (a) (12 12/1551); (b) (12 2/1441 8/1551 2/1661).

  • [1]

    Chen M W 2011 NPG Asia Mater. 3 82Google Scholar

    [2]

    Jiang H R, Bochtler B, Riegler S S, Wei X S, Neuber N, Frey M, Gallino I, Busch R, Shen J 2020 J. Alloys Compd. 844 156126Google Scholar

    [3]

    Hua N B, Chen W Z 2017 J. Alloys Compd. 693 816Google Scholar

    [4]

    Li H X, Lu Z C, Wang S L, Wu Y, Lu Z P 2019 Prog. Mater. Sci. 103 235Google Scholar

    [5]

    Yang Y J, Cheng B Y, Lv J W, Li B, Ma M Z, Zhang X Y, Li G, Liu R P 2019 Mater. Sci. Eng., A 746 229Google Scholar

    [6]

    Wang C J, He A N, Wang A D, Pang J, Liang X F, Li Q F, Chang C T, Qiu K Q, Wang X M 2017 Intermetallics 84 142Google Scholar

    [7]

    Jin Z S, Yang Y J, Zhang Z P, Ma X Z, Lv J W, Wang F L, Ma M Z, Zhang X Y, Liu R P 2019 J. Alloys Compd. 806 668Google Scholar

    [8]

    Liu S, Wang L F, Ge J C, Wu Z D, Ke Y B, Li Q, Sun B A, Feng T, Wu Y, Wang J T, Hahn H, Ren Y, Almer J D, Wang X L, Lan S 2020 Acta Mater. 200 42Google Scholar

    [9]

    Li F C, Liu T, Zhang J Y, Shuang S, Wang Q, Wang A D, Wang J G, Yang Y 2019 Mater. Today Adv. 4 100027Google Scholar

    [10]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. , R 44 45Google Scholar

    [11]

    Miracle D B, Senkov O N 2017 Acta Mater. 122 448Google Scholar

    [12]

    Abrosimova G E, Aronin A S 2017 Phys. Solid State 59 2248Google Scholar

    [13]

    Zhu L, Wang H, Wang Y C, Ma Y M, Cui Q L, Ma Y M, Zhou G T 2011 Phys. Rev. Lett. 106 145501Google Scholar

    [14]

    Sergueeva A V, Song C, Valiev R Z, Mukherjee A K 2003 Mater. Sci. Eng., A 339 159Google Scholar

    [15]

    Bazlov A I, Parkhomenko M S, Ubyivovk E V, Zanaeva E N, Gunderov D V, Louzguine-Luzgin D V 2022 J. Non-Cryst. Solids 576 121220Google Scholar

    [16]

    Galimzyanov B N, Doronina M A, Mokshin A V 2021 J. Non-Cryst. Solids 572 121102Google Scholar

    [17]

    Faruq M, Villesuzanne A, Shao G 2018 J. Non-Cryst. Solids 487 72Google Scholar

    [18]

    Hua D P, Ye W T, Jia Q, Zhou Q, Xia Q S, Shi J Q, Deng Y Y, Wang H F 2020 Appl. Surf. Sci. 511 145545Google Scholar

    [19]

    Barmpalexis P, Karagianni A, Katopodis K, Vardaka E, Kachrimanis K 2019 Eur. J. Pharm. Sci. 130 260Google Scholar

    [20]

    Verlet L 1967 Phys. Rev. 159 20Google Scholar

    [21]

    Sheng H W https:\\sites.google.com/site/eampotentials/ table/PdSi [2023-9-03

    [22]

    Ojovan M I, Louzguine-Luzgin D V 2020 J. Phys. Chem. B 124 3186Google Scholar

    [23]

    Deng Y H, Wen D D, Li Y, Liu J, Peng P 2018 Philos. Mag. 98 2861Google Scholar

    [24]

    Zheng K F, Branicio P S 2020 Phys. Rev. Mater. 4 076001Google Scholar

    [25]

    Suzuki K, Hayashi N, Tomizuka Y, Fukunaga T, Kai K, Watanabe N 1984 J. Non-Cryst. Solids 61 637Google Scholar

    [26]

    Wen D D, Deng Y H, Liu J, Tian Z A, Peng P 2017 Comput. Mater. Sci. 140 275Google Scholar

    [27]

    Liu R S, Liu H R, Dong K J, Hou Z Y, Tian Z A, Peng P, Yu A B 2009 J. Non-Cryst. Solids 355 541Google Scholar

    [28]

    Liu R S, Dong K J, Li J Y, Yu A B, Zou R P 2005 J. Non-Cryst. Solids 351 612Google Scholar

    [29]

    Wen D D, Deng Y H, Gao M, Tian Z A 2021 Chin. Phys. B 30 076101Google Scholar

    [30]

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Li W, Liu R S 2015 J. Non-Cryst. Solids 427 199Google Scholar

  • [1] 文大东, 祁青华, 黄欣欣, 易洲, 邓永和, 田泽安, 彭平. 液态Ta快凝过程中团簇的遗传及其与局域对称性的关联. 物理学报, 2023, 72(24): 246101. doi: 10.7498/aps.72.20231153
    [2] 王路, 王菊, 李娜娜, 梁策, 王文丹, 何竹, 刘秀茹. 快速加压引起的硒熔体结晶行. 物理学报, 2021, 70(15): 156201. doi: 10.7498/aps.70.20210253
    [3] 朱琪, 王升涛, 赵福祺, 潘昊. 层错四面体对单晶铜层裂行为影响的分子动力学研究. 物理学报, 2020, 69(3): 036201. doi: 10.7498/aps.69.20191425
    [4] 高明, 邓永和, 文大东, 田泽安, 赵鹤平, 彭平. 快凝Pd82Si18合金原子团簇的演化特性及遗传机制. 物理学报, 2020, 69(4): 046401. doi: 10.7498/aps.69.20190970
    [5] 李晓东, 李晖, 李鹏善. 同步辐射高压单晶衍射实验技术. 物理学报, 2017, 66(3): 036203. doi: 10.7498/aps.66.036203
    [6] 范航, 聂福德, 龙瑶, 陈军. 钝感高能炸药三氨基三硝基苯高温高压下热力学性质的分子动力学模拟研究. 物理学报, 2016, 65(6): 066201. doi: 10.7498/aps.65.066201
    [7] 邓永和, 文大东, 彭超, 韦彦丁, 赵瑞, 彭平. 二十面体团簇的遗传:一个与快凝Cu56Zr44合金玻璃形成能力有关的动力学参数. 物理学报, 2016, 65(6): 066401. doi: 10.7498/aps.65.066401
    [8] 陈基, 冯页新, 李新征, 王恩哥. 基于路径积分分子动力学与热力学积分方法的高压氢自由能计算. 物理学报, 2015, 64(18): 183101. doi: 10.7498/aps.64.183101
    [9] 吴宝嘉, 李燕, 彭刚, 高春晓. InSe的高压电输运性质研究. 物理学报, 2013, 62(14): 140702. doi: 10.7498/aps.62.140702
    [10] 王建伟, 宋亦旭, 任天令, 李进春, 褚国亮. F等离子体刻蚀Si中Lag效应的分子动力学模拟. 物理学报, 2013, 62(24): 245202. doi: 10.7498/aps.62.245202
    [11] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究. 物理学报, 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [12] 王海燕, 历长云, 高洁, 胡前库, 米国发. 高压下TiAl3结构及热动力学性质的第一性原理研究. 物理学报, 2013, 62(6): 068105. doi: 10.7498/aps.62.068105
    [13] 文大东, 彭平, 蒋元祺, 田泽安, 刘让苏. 快凝过程中液态Cu64Zr36合金二十面体团簇遗传与演化跟踪. 物理学报, 2013, 62(19): 196101. doi: 10.7498/aps.62.196101
    [14] 刘天元, 孙成林, 里佐威, 周密. Raman光谱方法研究三氯甲烷与苯分子间的 C/H相互作用. 物理学报, 2012, 61(10): 107801. doi: 10.7498/aps.61.107801
    [15] 周大伟, 卢成, 李根全, 宋金璠, 宋玉玲, 包刚. 高压下金属Ba的结构稳定性以及热动力学的第一原理研究. 物理学报, 2012, 61(14): 146301. doi: 10.7498/aps.61.146301
    [16] 周密, 李占龙, 陆国会, 李东飞, 孙成林, 高淑琴, 里佐威. 高压拉曼光谱方法研究联苯分子费米共振. 物理学报, 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [17] 吴宝嘉, 韩永昊, 彭刚, 刘才龙, 王月, 高春晓. 原位高压微米氧化锌电学性质的研究. 物理学报, 2010, 59(6): 4235-4239. doi: 10.7498/aps.59.4235
    [18] 周密, 张鹏, 刘铁成, 许大鹏, 姜永恒, 高淑琴, 里佐威. 压强对苯分子费米共振的影响. 物理学报, 2010, 59(1): 210-214. doi: 10.7498/aps.59.210
    [19] 陈敏, 汪俊, 侯氢. 氦对钛的体胀及稳定性影响的分子动力学模拟. 物理学报, 2009, 58(2): 1149-1153. doi: 10.7498/aps.58.1149
    [20] 王秀英, 陈 莹, 张宁玉, 赵丽萍, 庞岩涛, 王文魁. 压力对Zr46.75Ti8.25Cu7.5Ni10Be27.5大块非晶合金玻璃转变和晶化动力学的影响. 物理学报, 2007, 56(7): 4004-4008. doi: 10.7498/aps.56.4004
计量
  • 文章访问数:  915
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-06
  • 修回日期:  2023-09-28
  • 上网日期:  2023-11-16
  • 刊出日期:  2024-01-20

/

返回文章
返回