搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二十面体团簇的遗传:一个与快凝Cu56Zr44合金玻璃形成能力有关的动力学参数

邓永和 文大东 彭超 韦彦丁 赵瑞 彭平

引用本文:
Citation:

二十面体团簇的遗传:一个与快凝Cu56Zr44合金玻璃形成能力有关的动力学参数

邓永和, 文大东, 彭超, 韦彦丁, 赵瑞, 彭平

Heredity of icosahedrons: a kinetic parameter related to glass-forming abilities of rapidly solidified Cu56Zr44 alloys

Deng Yong-He, Wen Da-Dong, Peng Chao, Wei Yan-Ding, Zhao Rui, Peng Ping
PDF
导出引用
  • 采用分子动力学方法模拟研究了液态Cu56Zr44合金在不同冷速与压力P下的快速凝固过程, 并通过基于Honeycutt-Andersen键型指数的扩展团簇类型指数法对其微结构演变特性进行了分析. 结果表明: 快凝玻璃合金的局域原子组态主要是(12 12/1551)规则二十面体、以及 (12 8/1551 2/1541 2/1431)与(12 2/1441 8/1551 2/1661) 缺陷二十面体. 通过原子轨迹的逆向跟踪分析发现: 从过冷液体中遗传下来的二十面体对快凝合金的玻璃形成能力(GFA)具有重要影响, 不仅其可遗传分数Fi =N300 KTgi/NTg 与GFA密切相关, 而且其遗传起始温度(Tonset)与合金约化玻璃转变温度Trg = Tg/Tm也存在很好的对应关系.
    To explore the origin of glassy transition and glass-forming abilities (GFAs) of transition metal-transition metal (TM-TM) alloys from the microstructural point of view, a series of molecular dynamics (MD) simulation for the rapid solidification processes of liquid Cu56Zr44alloys at various cooling rates and pressures P are performed by using a LAMPS program. On the basis of Honeycutt-Andersen (H-A) bond-type index (ijkl), we propose an extended cluster-type index (Z, n/(ijkl)) method to characterize and analyze the microstructures of the alloy melts as well as their evolution in the rapid solidification. It is found that the majority of local atomic configurations in the rapidly solidified alloy are (12 12/1551) icosahedra, as well as (12 8/1551 2/1541 2/1431) and (12 2/1441 8/1551 2/1661) defective icosahedra, but no relationship can be seen between their number N(300 m K) and the glassy transition temperature Tg of rapidly solidified Cu56Zr44alloys. By an inverse tracking of atom trajectories from low temperatures to high temperatures the configuration heredity of icosahedral clusters in liquid is discovered to be an intrinsic feature of rapidly solidified alloys; the onset of heredity merely emerges in the super-cooled liquid rather than the initial alloy melt. Among these the (12 12/1551) standard icosahedra inherited from the super-cooled liquids at Tm-Tg is demonstrated to play a key role in the formation of Cu56Zr44 glassy alloys. Not only is their number N300 KTgP inherited from Tg to 300 K closely related to the GFA of rapidly solidified Cu56Zr44alloys, but a good correspondence of the onset temperatures of heredity (Tonset) with the reduced glass transition temperature (Trg= Tg/Tm) can be also observed. As for the influence of and P on the glassy transition, a continuous tracking of descendible icosahedra reveals that the high GFA of rapidly solidified Cu56Zr44 alloys caused by big and P can be attributed to their elevated inheritable fraction (fp and ftotal) above Tg.
      通信作者: 彭平, ppeng@hnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51071065, 51428101)和湖南省自然科学基金(2013JJ6070, 2015JJ5033)资助的课题.
      Corresponding author: Peng Ping, ppeng@hnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51071065, 51428101), and the Natural Science Foundation of Hunan Province, China (Grant Nos. 2013JJ6070, 2015JJ5033).
    [1]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [2]

    Wu Y, Wang H, Cheng Y Q, Liu X J, Hui X D, Nieh T, Wang Y D, Lu Z P 2015 Sci. Rep. 5 12137

    [3]

    Yu C Y, Liu X J, Zheng G P, Niu X R, Liu C T 2015 J. Alloys Comp. 627 48

    [4]

    Xia C J, Li J D, Cao Y X, Kou B Q, Xiao X H, Fezzaa K, Xiao T Q, Wang Y J 2015 Nat. Commun. 6 8409

    [5]

    Du X H, Huang J C 2008 Chin. Phys. B 17 0249

    [6]

    Cao Q P, Li J F, Zhou R H 2008 Chin. Phys. Lett. 25 3459

    [7]

    Yang L, Ge T, Guo G Q, Huang C L, Meng X F, Wei S H, Chen D, Chen L Y 2013 Intermetallics 34 106

    [8]

    Wu C, Huang Y J, Shen J 2013 Chin. Phys. Lett. 30 106102

    [9]

    Laws K J, Miracle D B, Ferry M 2015 Nat. Commun. 6 8123

    [10]

    Sha Z D, Xu B, Shen L, Zhang A H, Feng Y P, Li Y 2010 J. Appl. Phys. 107 063508

    [11]

    Cheng Y Q, Sheng H W, Ma E 2008 Phys. Rev. B 78 014207

    [12]

    Hao S G, Wang C Z, Li M Z, Napolitano R E, Ho K M 2011 Phys. Rev. B 84 064203

    [13]

    Peng H L, Li M Z, Wang W H, Wang C Z, Ho K M 2010 Appl. Phys. Lett. 96 021901

    [14]

    Zhang Y, Mattern N, Eckert J 2012 J. Appl. Phys. 111 053520

    [15]

    Wang H, Hu T, Qin J Y, Zhang T 2012 J. Appl. Phys. 112 073520

    [16]

    Guo G Q, Yang L, Zhang G Q 2011 Acta Phys. Sin. 60 016103 (in Chinese) [郭古青, 杨亮, 张国庆 2011 物理学报 60 016103]

    [17]

    Ma D, Stoica A D, Wang X L, Lu Z P, Xu M, Kramer M 2009 Phys. Rev. B 80 014202

    [18]

    Wu Z W, Li M Z, Wang W H, Liu K X 2013 Phys. Rev. B 88 054202

    [19]

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S 2013 Acta Phys. Sin. 62 196101 (in Chinese) [文大东, 彭平, 蒋元祺, 田泽安, 刘让苏 2013 物理学报 62 196101]

    [20]

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S, Dong K J 2014 J. Non-Cryst. Solids 388 75

    [21]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [22]

    Tian Z A, Liu R S, Dong K J, Yu A B 2011 Europhys. Lett. 96 36001

    [23]

    Tang M B, Zhao D Q, Pan M X, Wang W H 2004 Chin. Phys. Lett. 21 901

    [24]

    Li Y, Guo Q, Kalb J A, Thompson C V 2008 Science 322 1816

    [25]

    Fang X W, Wang C Z, Hao S G, Kramer M J, Yao Y X, Mendelev M I, Ding Z J, Napolitano R E, Ho K M 2011 Sci. Rep. 1 194

    [26]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [27]

    Li M Z, Wang C Z, Hao S G, Kramer M J, Ho K M 2009 Phys. Rev. B 80 184201

    [28]

    Liu A C Y, Neish M J, Stokol G, Buckley G A, Smillie L A, de Jonge M D, Ott R T, Kramer M J, Bourgeois L 2013 Phys. Rev. Lett. 110 205505

    [29]

    Zheng N C, Liu H R, Liu R S, Liang Y C, Mo Y F, Zhou Q Y, Tian Z A 2012 Acta Phys. Sin. 61 246102 (in Chinese) [郑乃超, 刘海蓉, 刘让苏, 梁永超, 莫云飞, 周群益, 田泽安 2012 物理学报 61 246102]

    [30]

    Cheng Y Q, Ma E 2008 Appl. Phys. Lett. 93 051910

    [31]

    Zhang Y, Zhang F, Wang C Z, Mendelev M I, Kramer M J, Ho K M 2015 Phys. Rev. B 91 064105

    [32]

    Setyawan A D, Kato H, Saida J, Inoue A 2007 Mater. Sci. Eng. A 499 903

    [33]

    Qi L, Dong L F, Zhang S L, Ma M Z, Jing Q, Li G, Liu R P 2008 Comput. Mater. Sci. 43 732

    [34]

    Kazanc S 2006 Comput. Mater. Sci. 38 405

    [35]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [36]

    Mendelev M I, Sordelet D J, Kramer M J 2007 J. Appl. Phys. 102 043501

    [37]

    Okamoto H 2008 J. Phase Equilib. Diffu. 29 204

    [38]

    Mattern N, Schps A, Khn U, Acker J, Khvostikova O, Eckert J 2008 J. Non-Cryst. Solids 354 1054

    [39]

    Kelton K, Lee G, Gangopadhyay A, Hyers R W, Rathz T J, Rogers J R, Robinson M B, Robinson D S 2003 Phys. Rev. Lett. 90 195504

    [40]

    Zhang Y, Mattern N, Eckert J 2011 J. Appl. Phys. 110 093506

    [41]

    Mendelev M I, Kramer M J, Ott R T, Sordelet D J 2009 Philo. Mag. 89 109

  • [1]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379

    [2]

    Wu Y, Wang H, Cheng Y Q, Liu X J, Hui X D, Nieh T, Wang Y D, Lu Z P 2015 Sci. Rep. 5 12137

    [3]

    Yu C Y, Liu X J, Zheng G P, Niu X R, Liu C T 2015 J. Alloys Comp. 627 48

    [4]

    Xia C J, Li J D, Cao Y X, Kou B Q, Xiao X H, Fezzaa K, Xiao T Q, Wang Y J 2015 Nat. Commun. 6 8409

    [5]

    Du X H, Huang J C 2008 Chin. Phys. B 17 0249

    [6]

    Cao Q P, Li J F, Zhou R H 2008 Chin. Phys. Lett. 25 3459

    [7]

    Yang L, Ge T, Guo G Q, Huang C L, Meng X F, Wei S H, Chen D, Chen L Y 2013 Intermetallics 34 106

    [8]

    Wu C, Huang Y J, Shen J 2013 Chin. Phys. Lett. 30 106102

    [9]

    Laws K J, Miracle D B, Ferry M 2015 Nat. Commun. 6 8123

    [10]

    Sha Z D, Xu B, Shen L, Zhang A H, Feng Y P, Li Y 2010 J. Appl. Phys. 107 063508

    [11]

    Cheng Y Q, Sheng H W, Ma E 2008 Phys. Rev. B 78 014207

    [12]

    Hao S G, Wang C Z, Li M Z, Napolitano R E, Ho K M 2011 Phys. Rev. B 84 064203

    [13]

    Peng H L, Li M Z, Wang W H, Wang C Z, Ho K M 2010 Appl. Phys. Lett. 96 021901

    [14]

    Zhang Y, Mattern N, Eckert J 2012 J. Appl. Phys. 111 053520

    [15]

    Wang H, Hu T, Qin J Y, Zhang T 2012 J. Appl. Phys. 112 073520

    [16]

    Guo G Q, Yang L, Zhang G Q 2011 Acta Phys. Sin. 60 016103 (in Chinese) [郭古青, 杨亮, 张国庆 2011 物理学报 60 016103]

    [17]

    Ma D, Stoica A D, Wang X L, Lu Z P, Xu M, Kramer M 2009 Phys. Rev. B 80 014202

    [18]

    Wu Z W, Li M Z, Wang W H, Liu K X 2013 Phys. Rev. B 88 054202

    [19]

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S 2013 Acta Phys. Sin. 62 196101 (in Chinese) [文大东, 彭平, 蒋元祺, 田泽安, 刘让苏 2013 物理学报 62 196101]

    [20]

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S, Dong K J 2014 J. Non-Cryst. Solids 388 75

    [21]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [22]

    Tian Z A, Liu R S, Dong K J, Yu A B 2011 Europhys. Lett. 96 36001

    [23]

    Tang M B, Zhao D Q, Pan M X, Wang W H 2004 Chin. Phys. Lett. 21 901

    [24]

    Li Y, Guo Q, Kalb J A, Thompson C V 2008 Science 322 1816

    [25]

    Fang X W, Wang C Z, Hao S G, Kramer M J, Yao Y X, Mendelev M I, Ding Z J, Napolitano R E, Ho K M 2011 Sci. Rep. 1 194

    [26]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [27]

    Li M Z, Wang C Z, Hao S G, Kramer M J, Ho K M 2009 Phys. Rev. B 80 184201

    [28]

    Liu A C Y, Neish M J, Stokol G, Buckley G A, Smillie L A, de Jonge M D, Ott R T, Kramer M J, Bourgeois L 2013 Phys. Rev. Lett. 110 205505

    [29]

    Zheng N C, Liu H R, Liu R S, Liang Y C, Mo Y F, Zhou Q Y, Tian Z A 2012 Acta Phys. Sin. 61 246102 (in Chinese) [郑乃超, 刘海蓉, 刘让苏, 梁永超, 莫云飞, 周群益, 田泽安 2012 物理学报 61 246102]

    [30]

    Cheng Y Q, Ma E 2008 Appl. Phys. Lett. 93 051910

    [31]

    Zhang Y, Zhang F, Wang C Z, Mendelev M I, Kramer M J, Ho K M 2015 Phys. Rev. B 91 064105

    [32]

    Setyawan A D, Kato H, Saida J, Inoue A 2007 Mater. Sci. Eng. A 499 903

    [33]

    Qi L, Dong L F, Zhang S L, Ma M Z, Jing Q, Li G, Liu R P 2008 Comput. Mater. Sci. 43 732

    [34]

    Kazanc S 2006 Comput. Mater. Sci. 38 405

    [35]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [36]

    Mendelev M I, Sordelet D J, Kramer M J 2007 J. Appl. Phys. 102 043501

    [37]

    Okamoto H 2008 J. Phase Equilib. Diffu. 29 204

    [38]

    Mattern N, Schps A, Khn U, Acker J, Khvostikova O, Eckert J 2008 J. Non-Cryst. Solids 354 1054

    [39]

    Kelton K, Lee G, Gangopadhyay A, Hyers R W, Rathz T J, Rogers J R, Robinson M B, Robinson D S 2003 Phys. Rev. Lett. 90 195504

    [40]

    Zhang Y, Mattern N, Eckert J 2011 J. Appl. Phys. 110 093506

    [41]

    Mendelev M I, Kramer M J, Ott R T, Sordelet D J 2009 Philo. Mag. 89 109

  • [1] 邱超, 张会臣. 正则系综条件下空化空泡形成的分子动力学模拟. 物理学报, 2015, 64(3): 033401. doi: 10.7498/aps.64.033401
    [2] 危洪清, 龙志林, 许福, 张平, 唐翌. Cu45Zr55-xAlx (x=3, 7, 12)块体非晶合金的第一性原理分子动力学模拟研究. 物理学报, 2014, 63(11): 118101. doi: 10.7498/aps.63.118101
    [3] 李春丽, 段海明, 买力坦, 开来木. Aln(n=13–32)团簇熔化行为的分子动力学模拟研究. 物理学报, 2013, 62(19): 193104. doi: 10.7498/aps.62.193104
    [4] 文大东, 彭平, 蒋元祺, 田泽安, 刘让苏. 快凝过程中液态Cu64Zr36合金二十面体团簇遗传与演化跟踪. 物理学报, 2013, 62(19): 196101. doi: 10.7498/aps.62.196101
    [5] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究. 物理学报, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [6] 陈敏. 分子动力学方法研究金属Ti中He小团簇的迁移. 物理学报, 2011, 60(12): 126602. doi: 10.7498/aps.60.126602
    [7] 闫娜, 王伟丽, 代富平, 魏炳波. 三元Co-Cu-Pb偏晶合金的快速凝固组织形成规律研究. 物理学报, 2011, 60(3): 036402. doi: 10.7498/aps.60.036402
    [8] 李志强, 王伟丽, 翟薇, 魏炳波. 快速凝固Fe62.1Sn27.9Si10合金的分层组织和偏晶胞形成机理. 物理学报, 2011, 60(10): 108101. doi: 10.7498/aps.60.108101
    [9] 刘建廷, 段海明. 不同势下铱团簇结构和熔化行为的分子动力学模拟. 物理学报, 2009, 58(7): 4826-4834. doi: 10.7498/aps.58.4826
    [10] 危洪清, 李乡安, 龙志林, 彭建, 张平, 张志纯. 块体非晶合金的黏度与玻璃形成能力的关系. 物理学报, 2009, 58(4): 2556-2564. doi: 10.7498/aps.58.2556
    [11] 张宗宁, 刘美林, 李蔚, 耿长建, 赵骞, 张林. 熔融Cu55团簇在Cu(010)表面上凝固过程的分子动力学模拟. 物理学报, 2009, 58(13): 67-S71. doi: 10.7498/aps.58.67
    [12] 徐送宁, 张林, 张彩碚, 祁阳. 熔融Cu55团簇在铜块体中凝固过程的分子动力学模拟. 物理学报, 2009, 58(13): 40-S46. doi: 10.7498/aps.58.40
    [13] 周国荣, 高秋明. 金属Ni纳米线凝固行为的分子动力学模拟. 物理学报, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [14] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [15] 赵九洲, 刘 俊, 赵 毅, 胡壮麒. 压力对非晶铜形成影响的分子动力学模拟. 物理学报, 2007, 56(1): 443-445. doi: 10.7498/aps.56.443
    [16] 夏明许, 孟庆格, 张曙光, 马朝利, 李建国. 金属玻璃形成液体的热力学特性. 物理学报, 2006, 55(12): 6543-6549. doi: 10.7498/aps.55.6543
    [17] 周耐根, 周 浪. 外延生长薄膜中失配位错形成条件的分子动力学模拟研究. 物理学报, 2005, 54(7): 3278-3283. doi: 10.7498/aps.54.3278
    [18] 杨全文, 朱如曾. 纳米铜团簇凝结规律的分子动力学研究. 物理学报, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [19] 徐锦锋, 魏炳波. 急冷快速凝固过程中液相流动与组织形成的相关规律. 物理学报, 2004, 53(6): 1909-1915. doi: 10.7498/aps.53.1909
    [20] 陈志浩, 刘兰俊, 张 博, 席 赟, 王 强, 祖方遒. Zr-Al-Ni-Cu(Nb,Ti)大块非晶玻璃转变的动力学性质. 物理学报, 2004, 53(11): 3839-3844. doi: 10.7498/aps.53.3839
计量
  • 文章访问数:  5999
  • PDF下载量:  287
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-02
  • 修回日期:  2015-11-16
  • 刊出日期:  2016-03-05

/

返回文章
返回