搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

快速加压引起的硒熔体结晶行

王路 王菊 李娜娜 梁策 王文丹 何竹 刘秀茹

引用本文:
Citation:

快速加压引起的硒熔体结晶行

王路, 王菊, 李娜娜, 梁策, 王文丹, 何竹, 刘秀茹

Mechanism of rapid compression-induced melt crystallization in selenium

Wang Lu, Wang Ju, Li Na-Na, Liang Ce, Wang Wen-Dan, He Zhu, Liu Xiu-Ru
PDF
HTML
导出引用
  • 开展了在513, 523, 533 K温度下硒熔体的快速压致凝固实验, 分析了不同保温时间即0, 30, 60 min对凝固晶体尺寸及形貌的影响. 发现随着保温时间的延长, 晶粒不断发生聚集生长, 晶粒尺寸变大. 通过与相同温度、压力条件下非晶硒、超细晶体硒粉等温结晶的样品对比, 否定了快压凝固结构为非晶硒、非晶硒晶化为晶体硒的可能性, 认为硒熔体快压凝固的结构为晶体硒, 在保温过程中晶体颗粒在晶界处可以发生聚集生长. 分析发现熔体快速压致凝固法不能得到非晶硒的原因在于实验条件下非晶硒为不稳定相, 非晶硒的晶化温度随压力关系在2 GPa前后表现出不同的变化趋势, 推测压力对过冷液态硒的微观结构有影响.
    Amorphous selenium (Se) can be easily prepared by quenching the melt, which indicates that the Se possesses the good glass-forming ability. However, crystallization occurs after rapidly compressing the melt within about 20 ms. In this work, we investigate the mechanism of rapid compression-induced crystallization from Se melt. Compressing Se melt experiments are carried out at the following temperatures: 513, 523 and 533 K. The melt is rapidly compressed under 2.4 GPa for about 20 ms. Different holding times, i.e. 0, 30, 60 min after solidification are adopted. The samples are quenched to room temperature and then unloaded to ambient pressure. The X-ray diffraction analysis of the recovered sample indicates that the crystallization product is the t-Se. It is found that with the prolongation of holding time, the grain size increases due to the continuous aggregation growth of crystal grains. By comparing with the isothermal crystallization products of amorphous Se and ultrafine Se powder, it is suggested that the rapid compression-induced solidification product should be t-Se crystalline. The speculation that the solidification product is amorphous Se and it crystallizes in the cooling process does not hold true. The amorphous Se cannot be prepared through the rapid compression process on a millisecond scale. It is related to the thermal stability of amorphous Se under high pressure. It is reported that the dependence of crystallization temperature Tx on pressure i.e. dTx/dP for amorphous Se is about 40–50 K/GPa in a range of 0.1 MPa–1 GPa. However, the Tx of amorphous Se is almost constant in a range of 2–6 GPa. It means that the thermal stability of amorphous Se against crystallization does not increase with increasing pressure after 2 GPa. In this work, the temperature of 513–533 K in the experiments is higher than the Tx of amorphous Se. Therefore, the t-Se crystal is the stable phase and amorphous Se is unstable. The Se melt tends to crystallize in the supercooled liquid state after rapid compression. It is interesting to investigate the mechanism of dTx/dP curve discontinuous change at around 2 GPa in the future. Both the Se melt after rapid compression and the amorphous Se before crystallization are in supercooled liquid state. We speculate that high pressure may result in the microstructure transition in supercooled liquid state Se.
      通信作者: 刘秀茹, xrliu@swjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 10774123)和中央高校基本科研业务费(批准号: 2682018ZT29)资助的课题
      Corresponding author: Liu Xiu-Ru, xrliu@swjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10774123) and the Fundamental Research Funds for the Central Universities, China (Grant No. 2682018ZT29)
    [1]

    Huang H Y, Abbaszadeh S 2020 IEEE Sens. J. 20 1694Google Scholar

    [2]

    Matsuura M, Suzuki K 1979 J. Mater. Sci. 14 395Google Scholar

    [3]

    Fan G J, Guo F Q, Hu Z Q, Quan M X, Lu K 1997 Phys. Rev. B 55 11010Google Scholar

    [4]

    邵胜子, 陈泽祥 2011 电子元器件应用 8 28Google Scholar

    Shao Z S, Chen Z X 2011 Electr. Comp. Devic. Appl. 8 28Google Scholar

    [5]

    Sun H, Zhu X H, Yang D Y, Wangyang P H, Gao X Y, Tian H B 2016 Mater. Lett. 183 94Google Scholar

    [6]

    Singh A K, Kennedy G C 1975 J. Appl. Phys. 46 3861Google Scholar

    [7]

    Mohan M, Singh A K 1993 Philos. Mag. B 67 705Google Scholar

    [8]

    Zhang H Y, Hu Z Q, Lu K 1995 Nanostruct. Mater. 5 41Google Scholar

    [9]

    Tonchev D, Mani H, Belev G, Kostova I, Kasap S 2014 18th International School on Condensed Matter Physics-Challenges of Nanoscale Science-Theory, Materials, Applications Varna, Bulgaria, September 1−6, 2014 p012007

    [10]

    Abbaszadeh S, Rom K, Bubon O 2012 J. Non-Cryst. Solids 358 2389Google Scholar

    [11]

    Yu T Y, Pan F M, Chang C Y, Lin J S, Huang W H 2015 J. Appl. Phys. 118 044509Google Scholar

    [12]

    Ohkawa Y J, Miyakawa K, Matsubara T, Kikuchi K, Tanioka K, Kubota M, Egami N, Kobayashi A 2011 Phys. Status Solidi C 8 2818Google Scholar

    [13]

    Mao H K, Chen B, Chen J, Li K, Lin J F, Yang W, Zheng H 2016 Matter. Radiat. Extremes 1 59Google Scholar

    [14]

    Degtyareva O, Hernández E R, Serrano J, Somayazulu M, Mao H K, Gregoryanz E, Hemley R J 2007 J. Chem. Phys. 126 084503Google Scholar

    [15]

    Li X, Huang X L, Wang X, Liu M K, Wu G, Huang Y P, He X, Li F F, Zhou Q, Liu B B, Cui T 2018 Phys. Chem. Chem. Phys. 20 6116Google Scholar

    [16]

    Bridgman P W 1941 Phys. Rev. 60 351Google Scholar

    [17]

    McCann D R, Cartz L 1972 J. Chem. Phys. 56 2552Google Scholar

    [18]

    Liu H Z, Wang L H, Xiao X H, Carlo F D, Feng J, Mao H K, Hemley R J 2008 PNAS 105 13229Google Scholar

    [19]

    He Z, Wang Z G, Zhu H Y, Liu X R, Peng J P, Hong S M 2014 Appl. Phys. Lett. 105 011901Google Scholar

    [20]

    Hong S M, Chen L Y, Liu X R, Wu X H, Su L 2005 Rev. Sci. Instrum. 76 053905Google Scholar

    [21]

    刘秀茹, 王明友, 张豆豆, 张晨然, 何竹, 陈丽英, 沈如, 洪时明 2014 高压物理学报 28 385Google Scholar

    Liu X R, Wang M Y, Zhang D D, Zhang C R, He Z, Chen L Y, Shen R, Hong S M 2014 Chin. J. High Pressure Phys. 28 385Google Scholar

    [22]

    Hu Y, Su L, Liu X R, Sun Z Y, Lv S J, Yuan C S, Jia R, Shen R, Hong S M 2010 Chin. Phys. Lett. 27 038101Google Scholar

    [23]

    He Z, Liu X R, Zhang D D, Zhang L J, Hong S M 2014 Solid State Commun. 197 30Google Scholar

    [24]

    Ye F, Lu K 1998 Acta Mater. 46 5965Google Scholar

    [25]

    Dai R C, Luo L B, Zhang Z M, Ding Z J 2011 Mater. Res. Bull. 46 350Google Scholar

    [26]

    Akahama Y, Kobayashi M, Kawamura M H 1993 Phys. Rev. B 47 20Google Scholar

  • 图 1  活塞-圆筒式高压模具及样品组装方式示意图

    Fig. 1.  Sample assembly in the piston-cylinder mode.

    图 2  (a)快速压致凝固实验的路径示意图; (b)等温结晶实验的路径示意图; 图中数字表示实验步骤的顺序

    Fig. 2.  (a) A schematic diagram of rapid compression solidification process; (b) a schematic diagram of isothermal crystallization process. The number represents the order of the experimental steps.

    图 3  不同温度下快速压致凝固样品的XRD图谱(给出了初始微米粉末样品的XRD图谱作为对比) (a) 513 K; (b) 523 K; (c) 533 K

    Fig. 3.  XRD patterns of Se samples, which are rapidly solidified from melt at different temperatures of (a) 513 K; (b) 523 K; (c) 533 K. As comparison, the XRD pattern of μm scale Se powder is also displayed.

    图 4  不同温度下快速压致凝固样品的SEM图谱

    Fig. 4.  SEM pictures of Se samples, which are rapidly solidified from melt at different temperatures.

    图 5  (a) 非晶硒样品的XRD图谱, 包括常压制备的非晶硒XRD图谱、非晶硒常温快压后回收样品的XRD图谱; (b)在513, 523, 533 K温度下非晶硒等温结晶样品的XRD图谱

    Fig. 5.  (a) XRD patterns of amorphous selenium (a-Se) sample and the compressed a-Se which is recovered after rapidly compressed at room temperature; (b) XRD patterns of Sample I, Sample II, Sample III, which are the isothermal crystallization products of a-Se at 513, 523, and 533 K, respectively.

    图 6  在513, 523, 533 K温度下非晶硒等温结晶样品的SEM图谱

    Fig. 6.  SEM pictures of Sample I, Sample II, Sample III. The temperatures of 513, 523, and 533 K are the isothermal crystallization temperatures of a-Se.

    图 7  在513, 523, 533 K温度下超细硒粉等温结晶样品的XRD图谱

    Fig. 7.  XRD patterns of Sample 1, Sample 2, Sample 3, which are the isothermal crystallization products of ultrafine Se powder at 513, 523, and 533 K, respectively.

    图 8  (a)超细硒微粉的SEM图; (b)不同温度下超细硒粉等温结晶Sample 1, Sample 2, Sample 3的SEM图

    Fig. 8.  (a) SEM picture of ultrafine Se powder; (b) SEM pictures of Sample 1, Sample 2, Sample 3. The temperatures of 513 K, 523 K and 533 K are the isothermal crystallization temperatures of ultrafine Se powder.

    图 9  Sample A1, Sample B1, Sample C1, Sample I, Sample II, Sample III衍射谱的精修结果, 图中黑色点表示衍射实验数据, 红色曲线为计算的衍射峰, 蓝色曲线为实验数据与计算数据的偏差, 紫色的短线表示t-Se相衍射峰的位置

    Fig. 9.  XRD patterns of Sample A1, Sample B1, Sample C1, Sample I, Sample II, Sample III. Symbols: experimental data (black dots), calculated diffraction pattern (red line), residuals of the refinement (blue solid line), and peak positions of t-Se (purple vertical bar).

    图 10  非晶硒的晶化起始温度Tx和晶化产物t-Se的熔化温度Tm随压力的变化关系, 其中, Ye和Lu[24]的数据测量实验的升温速率为8.7 K/min, He等[23]的数据测量实验的升温速率为8.6 K/min, 内插图清楚地显示了400—560 K温度范围内的关系曲线

    Fig. 10.  Onset crystallization temperature (Tx) of a-Se and the melting temperature (Tm) of a-Se crystallization product i.e. t-Se as a function of the applied pressure. Data from Ye and Lu[24] was measured under the heating rate of 8.7 K/min. Data from He et al.[23] was measured under the heating rate of 8.6 K/min. The pressure and temperature conditions in this work are shown. The inset figure displays clearly the data in the range of 400–560 K.

    图 11  微米粉末样品、Sample 2、Sample B2、Sample II的拉曼光谱图

    Fig. 11.  Raman spectra of μm scale Se powder, Sample 2, Sample B2, Sample II.

    表 1  Sample A1, Sample B1, Sample C1, Sample I, Sample II, Sample III的XRD谱中部分衍射晶面的信息, 包括衍射峰的相对强度I、晶面间距d、半峰宽FWHM

    Table 1.  Diffraction peaks parameters of Sample A1, Sample B1, Sample C1, Sample I, Sample II, Sample III, including the relative peak intensity (I), interplanar distance (d) and peak width at half-height (FWHM).

    (100) (101) (110) (012) (111)
    I/%d/nmFWHM/(°)I/%d/nmFWHM/(°)I/%d/nmFWHM/(°)I/%d/nmFWHM/(°)I/%d/nmFWHM/(°)
    μm powder43.73.7950.4461003.0130.353 13.92.1870.593 30.42.0740.453 19.22.0020.592
    Sample A125.33.7930.3161003.0100.1878.62.1860.47415.32.0770.29213.42.0010.395
    Sample B124.83.7790.2511003.0040.1667.72.1820.30124.62.0720.2159.51.9970.323
    Sample C134.73.7850.2311003.0100.18210.52.1840.29238.52.0750.24313.51.9990.323
    Sample I39.53.7850.2901003.0100.21811.62.1850.44720.72.0770.34914.12.0000.435
    Sample II51.73.7890.3241003.0070.23810.42.1850.52119.72.0770.34912.21.9990.489
    Sample III33.23.7890.3261003.0070.24410.02.1830.50024.42.0780.37613.32.0000.487
    下载: 导出CSV
  • [1]

    Huang H Y, Abbaszadeh S 2020 IEEE Sens. J. 20 1694Google Scholar

    [2]

    Matsuura M, Suzuki K 1979 J. Mater. Sci. 14 395Google Scholar

    [3]

    Fan G J, Guo F Q, Hu Z Q, Quan M X, Lu K 1997 Phys. Rev. B 55 11010Google Scholar

    [4]

    邵胜子, 陈泽祥 2011 电子元器件应用 8 28Google Scholar

    Shao Z S, Chen Z X 2011 Electr. Comp. Devic. Appl. 8 28Google Scholar

    [5]

    Sun H, Zhu X H, Yang D Y, Wangyang P H, Gao X Y, Tian H B 2016 Mater. Lett. 183 94Google Scholar

    [6]

    Singh A K, Kennedy G C 1975 J. Appl. Phys. 46 3861Google Scholar

    [7]

    Mohan M, Singh A K 1993 Philos. Mag. B 67 705Google Scholar

    [8]

    Zhang H Y, Hu Z Q, Lu K 1995 Nanostruct. Mater. 5 41Google Scholar

    [9]

    Tonchev D, Mani H, Belev G, Kostova I, Kasap S 2014 18th International School on Condensed Matter Physics-Challenges of Nanoscale Science-Theory, Materials, Applications Varna, Bulgaria, September 1−6, 2014 p012007

    [10]

    Abbaszadeh S, Rom K, Bubon O 2012 J. Non-Cryst. Solids 358 2389Google Scholar

    [11]

    Yu T Y, Pan F M, Chang C Y, Lin J S, Huang W H 2015 J. Appl. Phys. 118 044509Google Scholar

    [12]

    Ohkawa Y J, Miyakawa K, Matsubara T, Kikuchi K, Tanioka K, Kubota M, Egami N, Kobayashi A 2011 Phys. Status Solidi C 8 2818Google Scholar

    [13]

    Mao H K, Chen B, Chen J, Li K, Lin J F, Yang W, Zheng H 2016 Matter. Radiat. Extremes 1 59Google Scholar

    [14]

    Degtyareva O, Hernández E R, Serrano J, Somayazulu M, Mao H K, Gregoryanz E, Hemley R J 2007 J. Chem. Phys. 126 084503Google Scholar

    [15]

    Li X, Huang X L, Wang X, Liu M K, Wu G, Huang Y P, He X, Li F F, Zhou Q, Liu B B, Cui T 2018 Phys. Chem. Chem. Phys. 20 6116Google Scholar

    [16]

    Bridgman P W 1941 Phys. Rev. 60 351Google Scholar

    [17]

    McCann D R, Cartz L 1972 J. Chem. Phys. 56 2552Google Scholar

    [18]

    Liu H Z, Wang L H, Xiao X H, Carlo F D, Feng J, Mao H K, Hemley R J 2008 PNAS 105 13229Google Scholar

    [19]

    He Z, Wang Z G, Zhu H Y, Liu X R, Peng J P, Hong S M 2014 Appl. Phys. Lett. 105 011901Google Scholar

    [20]

    Hong S M, Chen L Y, Liu X R, Wu X H, Su L 2005 Rev. Sci. Instrum. 76 053905Google Scholar

    [21]

    刘秀茹, 王明友, 张豆豆, 张晨然, 何竹, 陈丽英, 沈如, 洪时明 2014 高压物理学报 28 385Google Scholar

    Liu X R, Wang M Y, Zhang D D, Zhang C R, He Z, Chen L Y, Shen R, Hong S M 2014 Chin. J. High Pressure Phys. 28 385Google Scholar

    [22]

    Hu Y, Su L, Liu X R, Sun Z Y, Lv S J, Yuan C S, Jia R, Shen R, Hong S M 2010 Chin. Phys. Lett. 27 038101Google Scholar

    [23]

    He Z, Liu X R, Zhang D D, Zhang L J, Hong S M 2014 Solid State Commun. 197 30Google Scholar

    [24]

    Ye F, Lu K 1998 Acta Mater. 46 5965Google Scholar

    [25]

    Dai R C, Luo L B, Zhang Z M, Ding Z J 2011 Mater. Res. Bull. 46 350Google Scholar

    [26]

    Akahama Y, Kobayashi M, Kawamura M H 1993 Phys. Rev. B 47 20Google Scholar

  • [1] 王飞, 李全军, 胡阔, 刘冰冰. 高压导致纳米TiO2形变的电子显微研究. 物理学报, 2023, 72(3): 036201. doi: 10.7498/aps.72.20221656
    [2] 王志飞, 王路, 王菊, 刘秀茹. 聚苯硫醚熔体的压致凝固行为. 物理学报, 2020, 69(9): 096101. doi: 10.7498/aps.69.20191820
    [3] 李酽, 张琳彬, 李娇, 连晓雪, 朱俊武. 电场条件下氧化锌结晶特性及极化产物的拉曼光谱分析. 物理学报, 2019, 68(7): 070701. doi: 10.7498/aps.68.20181961
    [4] 贝帮坤, 王华光, 张泽新. 有限尺寸胶体体系的二维结晶. 物理学报, 2019, 68(10): 106401. doi: 10.7498/aps.68.20190304
    [5] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理. 物理学报, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [6] 董家君, 姚明光, 刘世杰, 刘冰冰. 高压下准一维纳米结构的研究. 物理学报, 2017, 66(3): 039101. doi: 10.7498/aps.66.039101
    [7] 李晓东, 李晖, 李鹏善. 同步辐射高压单晶衍射实验技术. 物理学报, 2017, 66(3): 036203. doi: 10.7498/aps.66.036203
    [8] 王理林, 王志军, 林鑫, 王锦程, 黄卫东. 冷却速率对温敏聚N-异丙基丙烯酰胺胶体结晶过程的影响. 物理学报, 2016, 65(10): 106403. doi: 10.7498/aps.65.106403
    [9] 严大东, 张兴华. 聚合物结晶理论进展. 物理学报, 2016, 65(18): 188201. doi: 10.7498/aps.65.188201
    [10] 郭静, 孙力玲. 压力下碱金属铁硒基超导体中的现象与物理. 物理学报, 2015, 64(21): 217406. doi: 10.7498/aps.64.217406
    [11] 吴宝嘉, 李燕, 彭刚, 高春晓. InSe的高压电输运性质研究. 物理学报, 2013, 62(14): 140702. doi: 10.7498/aps.62.140702
    [12] 周密, 李占龙, 陆国会, 李东飞, 孙成林, 高淑琴, 里佐威. 高压拉曼光谱方法研究联苯分子费米共振. 物理学报, 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [13] 潘书万, 亓东峰, 陈松岩, 李成, 黄巍, 赖虹凯. Si(100)表面Se薄膜生长及其在Ti/Si欧姆接触中的应用. 物理学报, 2011, 60(9): 098108. doi: 10.7498/aps.60.098108
    [14] 吴宝嘉, 韩永昊, 彭刚, 刘才龙, 王月, 高春晓. 原位高压微米氧化锌电学性质的研究. 物理学报, 2010, 59(6): 4235-4239. doi: 10.7498/aps.59.4235
    [15] 马丽, 高勇. 半超结SiGe高压快速软恢复开关二极管. 物理学报, 2009, 58(1): 529-535. doi: 10.7498/aps.58.529
    [16] 叶祥熙, 明辰, 胡蕴成, 宁西京. 体材料结晶能力的理论预测. 物理学报, 2009, 58(5): 3293-3301. doi: 10.7498/aps.58.3293
    [17] 丁迎春, 徐 明, 潘洪哲, 沈益斌, 祝文军, 贺红亮. γ-Si3N4在高压下的电子结构和物理性质研究. 物理学报, 2007, 56(1): 117-122. doi: 10.7498/aps.56.117
    [18] 杨 炯, 张文清. Se,Te纳米线系统的结构稳定性研究. 物理学报, 2007, 56(7): 4017-4023. doi: 10.7498/aps.56.4017
    [19] 邵光杰, 秦秀娟, 刘日平, 王文魁, 姚玉书. 氧化锌纳米晶高压下的晶粒演化和性能. 物理学报, 2006, 55(1): 472-476. doi: 10.7498/aps.55.472
    [20] 王海燕, 刘日平, 马明臻, 高 明, 姚玉书, 王文魁. FeSi2合金在高压下的凝固. 物理学报, 2004, 53(7): 2378-2383. doi: 10.7498/aps.53.2378
计量
  • 文章访问数:  5349
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-02
  • 修回日期:  2021-03-17
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-05

/

返回文章
返回