搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沸石分子筛对CH4/H2的吸附与分离性能

袁俊鹏 刘秀英 李晓东 于景新

引用本文:
Citation:

沸石分子筛对CH4/H2的吸附与分离性能

袁俊鹏, 刘秀英, 李晓东, 于景新

Molecular simulation for adsorption and separation of CH4/H2 in zeolites

Yuan Jun-Peng, Liu Xiu-Ying, Li Xiao-Dong, Yu Jing-Xin
PDF
HTML
导出引用
  • 基于分子模拟的高通量计算方法, 通过对199个沸石结构特征和吸附分离性能之间的关联性研究, 发现具有超微孔结构的沸石材料对CH4分子有良好的吸附分离性能, 等摩尔CH4/H2混合组份的CH4吸附选择性和单组份的CH4吸附量之间存在明显的线性关系. 通过使用巨正则蒙特卡罗模拟方法, 获得了3个孔道形沸石对CH4和H2的吸附等温线和等量吸附热等物理量. 结果表明在相同外界环境下, 孔道形沸石的孔结构(表面积和孔体积)对CH4吸附量的影响高于能量效应(吸附热). 结合甲烷蒸汽重整制氢的工业背景, 进一步研究了CH4/H2混合体系在不同组份下的分离选择性能, 结果表明, 超微孔沸石材料对CH4的吸附选择性与体相压力和进料比无关. 通过气体分子的质心分布密度发现, CH4在孔道形沸石中优先占据更小孔窗的空间, 而H2的分布范围更大但是未存在明显的优先吸附位点.
    Based on the high-throughput calculation method of molecular simulation, except the structures with zero surface area and less than zero adsorption capacity, four geometric descriptors (largest cavity diameter, specific surface area, pore volume and porosity), an energy descriptor (heat of adsorption), adsorption capacity, and adsorption selectivity coefficient of 199 zeolites are obtained. By studying the correlation between structural characteristics and adsorption separation performance, the result shows that when the largest cavity diameter is 6 Å, the surface area is 1400–2100 m2·g–1, and the pore volume is in a range of 0.2–0.3 cm3·g–1, the zeolite has the greatest influence on the adsorption capacity and adsorption selectivity for methane molecules. At the same time, it is found that the largest cavity diameter and porosity of zeolite molecular sieves have a positive correlation, and there is also an obvious linear relationship between the CH4 adsorption selectivity coefficient of the equimolar CH4/H2 mixed component and the single-component CH4 adsorption capacity. By using the grand canonical Monte Carlo simulation method, physical quantities such as adsorption isotherms and isosteric heats of adsorption for CH4 and H2 of three channel-shaped zeolites are obtained. The result shows that the pore structure (surface area and pore volume) of the channel-shaped zeolite has a greater influence on the CH4 adsorption capacity than the energy effect (heat of adsorption), under the same external environment. Combining with the industrial background of steam methane reforming hydrogen production, the separation and selectivity performance of the CH4/H2 mixed system under different components are further studied. The result reveals that there is no correlation between adsorption selectivity of ultra-microporous zeolite material for CH4 and bulk pressure or feed ratio. According to the centroid distribution density of gas molecules, it is found that CH4 preferentially occupies the space of smaller pore windows in the channel-shaped zeolite, while the distribution range of H2 is larger but there is no unambiguous preferential adsorption site.
      通信作者: 刘秀英, liuxiuyingzx@126.com
    • 基金项目: 国家自然科学基金(批准号: 11304079, 11404094, 11504088)、河南省科技厅科技攻关项目(批准号: 182102410076)和河南省高等学校青年骨干教师专项基金(批准号: hnqg20140102)资助的课题
      Corresponding author: Liu Xiu-Ying, liuxiuyingzx@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304079, 11404094, 11504088), the Key Science and Technology Research Project of Henan Provincial Science and Technology Department, China (Grant No. 182102410076), and the Foundation for Young Core Teachers of Higher Education Institutions of Henan Province of China (Grant No. hnqg20140102)
    [1]

    Nijem N, Veyan J F, Kong L Z, Li K, Pramanik S, Zhao Y, Li J, Langreth D, Chabal Y J 2010 J. Am. Chem. Soc. 132 1654Google Scholar

    [2]

    Liu X B, Li W X, Zhao X D, Fan L Z 2019 Adv. Funct. Mater. 29 1901510Google Scholar

    [3]

    陈玉红, 刘婷婷, 张梅玲, 元丽华, 张材荣 2017 化学学报 75 708Google Scholar

    Chen Y H, Liu T T, Zhang M L, Yuan L H, Zhang C R 2017 Acta Chim. Sin. 75 708Google Scholar

    [4]

    刘秀英, 王朝阳, 唐永建, 孙卫国, 吴卫东, 张厚琼, 刘淼, 袁磊, 徐嘉靖 2009 物理学报 58 1126Google Scholar

    Liu X Y, Wang C Y, Tang Y J, Sun W G, Wu W D, Zhang H Q, Liu M, Yuan L, Xu J J 2009 Acta Phys. Sin. 58 1126Google Scholar

    [5]

    Chen J J, Gao X H, Yan L F, Xu D G 2018 Int. J. Hydrogen Energy 43 12948Google Scholar

    [6]

    LeValley T L, Richard A R, Fan M H 2014 Int. J. Hydrogen Energy 39 16983Google Scholar

    [7]

    Yang Q Y, Wiersum A D, Jobic H, Guillerm V, Serre C, Llewellyn P L, Maurin G 2011 J. Phys. Chem. C 115 13768Google Scholar

    [8]

    Bastos-Neto M, Patzschke C, Lange M, Guillerm V, Serre C, Llewellyn P L, Maurin G 2012 Energy Environ. Sci. 5 8294Google Scholar

    [9]

    Zhou D, Cheng Q Y, Cui Y, Wang T, Li X X, Han B H 2014 Carbon 66 592Google Scholar

    [10]

    吴选军, 郑佶, 李江, 蔡卫权 2013 物理化学学报 29 2207Google Scholar

    Wu X J, Zheng J, Li J, Cai W Q 2013 Acta Phys.-Chim. Sin. 29 2207Google Scholar

    [11]

    Chue K T, Kim J N, Yoo Y J, Cho S H, Yang R T 1995 Ind. Eng. Chem. Res. 34 591Google Scholar

    [12]

    Ho M T, Allinson G W, Wiley D E 2008 Ind. Eng. Chem. Res. 47 1562Google Scholar

    [13]

    Li Y, Yu J H 2014 Chem. Rev. 114 7268Google Scholar

    [14]

    Li J Y, Corma A, Yu J H 2015 Chem. Soc. Rev. 44 7112Google Scholar

    [15]

    Weckhuysen B M, Yu J H 2015 Chem. Soc. Rev. 44 7022Google Scholar

    [16]

    Ferri P, Li C G, Paris C, Vidal-Moya A, Moliner M, Boronat M, Corma A 2019 ACS Catal. 9 11542Google Scholar

    [17]

    Margarit V J, Osman M, Al-Khattaf S, Martínez C, Boronat M, Corma A 2019 ACS Catal. 9 5935Google Scholar

    [18]

    McCusker L B, Liebau F, Engelhardt G 2001 Pure Appl. Chem. 73 381Google Scholar

    [19]

    Li Y, Cao H, Yu J H 2018 ACS Nano 12 4096Google Scholar

    [20]

    Stückenschneider K, Merz J, Schembecker G 2013 J. Mol. Model. 19 5611Google Scholar

    [21]

    Fu H, Wang Y J, Zhang T H, Yang C H, Shan H H 2017 J. Phys. Chem. C 121 25818Google Scholar

    [22]

    Perez-Carbajo J, Gómez-Álvarez P, Bueno-Perez R, Merkling P J, Calero S 2014 Phys. Chem. Chem. Phys. 16 5678Google Scholar

    [23]

    刘秀英, 李晓凤, 张丽英, 樊志琴, 马兴科 2012 物理学报 61 146802Google Scholar

    Liu X Y, Li X F, Zhang L Y, Fan Z Q, Ma X K 2012 Acta Phys. Sin. 61 146802Google Scholar

    [24]

    Curtarolo S, Hart G L W, Nardelli M B, Mingo N, Sanvito S, Levy O 2013 Nat. Mater. 12 191Google Scholar

    [25]

    刘治鲁, 李炜, 刘昊, 庄旭东, 李松 2019 化学学报 77 323Google Scholar

    Liu Z L, Li W, Liu H, Zhuang X D, Li S 2019 Acta Chim. Sin. 77 323Google Scholar

    [26]

    Wollmann P, Leistner M, Stoeck U, Grünker R, Gedrich K, Klein N, Throl O, Grählert W, Senkovska I, Dreisbach F, Kaskel S 2011 Chem. Commun. 47 5151Google Scholar

    [27]

    Database of Zeolite Structures http://www.iza-structure.org/databases/

    [28]

    Martin R L, Smit B, Haranczyk M 2012 J. Chem. Inf. Model. 52 308Google Scholar

    [29]

    Pinheiro M, Martin R L, Rycroft C H, Jones A, Iglesia E, Haranczyk M 2013 J. Mol. Graphics Modell. 44 208Google Scholar

    [30]

    Bai P, Tsapatsis M, Siepmann J I 2013 J. Phys. Chem. C 117 24375Google Scholar

    [31]

    Goodbody S J, Watanabe K, MacGowan D, Walton J P R B, Quirke N 1991 Faraday Trans. 87 1951Google Scholar

    [32]

    Levesque D, Gicquel A, Darkrim F L, Kayiran S B 2002 J. Phys. Condens. Matter 14 9285Google Scholar

    [33]

    Peng X, Cheng X, Cao D P 2011 J. Mater. Chem. 21 11259Google Scholar

    [34]

    Dubbeldam D, Torres-Knoop A, Walton K S 2013 Mol. Simulat. 39 1253Google Scholar

    [35]

    Dubbeldam D, Snurr R Q 2007 Mol. Simul. 33 305Google Scholar

    [36]

    Bao Z B, Alnemrat S, Yu L, Vasiliev I, Ren Q L, Lu X Y, Deng S G 2011 Langmuir 27 13554Google Scholar

  • 图 1  高通量计算流程

    Fig. 1.  High-throughput calculation process.

    图 2  ASV, BOF和FER的孔道结构

    Fig. 2.  Channel structure of ASV, BOF and FER.

    图 3  沸石材料中吸附性能与孔结构之间的关联性

    Fig. 3.  Correlation between adsorption performance and pore structure in zeolite materials.

    图 4  沸石材料中分离性能与孔结构之间的关联性

    Fig. 4.  Correlation between separation performance and pore structure in zeolite materials.

    图 5  (a) LCD, porosity和POAV之间的关联性; (b), (c) 甲烷吸附量、吸附热和甲烷/氢气吸附选择性之间的关联性

    Fig. 5.  (a) Relationship between LCD, porosity and POAV; (b), (c) the correlation between CH4 adsorption capacity, adsorption heat and CH4/H2 adsorption selectivity.

    图 6  沸石对CH4 (a) 和H2 (b) 的吸附量

    Fig. 6.  Adsorption capacity of zeolite for CH4 (a) and H2 (b)

    图 7  沸石中CH4 (a) 和H2 (b) 的等量吸附热

    Fig. 7.  Isosteric heat of adsorption of CH4 (a) and H2 (b) in zeolite.

    图 8  压力对三种气体组份的CH4选择性的影响 (a) y CH4/yH2 = 0.05∶0.95; (b) y CH4/yH2 = 0.5∶0.5; (c) y CH4/yH2 = 0.95∶0.05

    Fig. 8.  Influence of pressure on CH4 selectivity for three gas compositions: (a) y CH4/yH2 = 0.05∶0.95; (b) y CH4/yH2 = 0.5∶0.5, (c) y CH4/yH2 = 0.95∶0.05.

    图 9  CH4在ASV, BOF和FER沿孔径方向(a), (b), (c) 和垂直于孔径方向 (d), (e), (f) 的质心密度分布

    Fig. 9.  Centroid density distribution of CH4 in ASV, BOF and FER along the aperture direction (a), (b), (c) and perpendicular to the aperture direction (d), (e), (f).

    图 10  H2在ASV, BOF和FER沿孔径方向(a), (b), (c) 和垂直于孔径方向 (d), (e), (f) 的质心密度分布

    Fig. 10.  Centroid density distribution of H2 in ASV, BOF and FER along the aperture direction (a), (b), (c) and perpendicular to the aperture direction (d), (e), (f).

    表 1  沸石的结构参数

    Table 1.  Structural parameters of zeolite.

    ZeoliteUnit cell/ÅCell angle/(°)PLD/ÅASA/(m2·g–1)POAV/(cm3·g–1)
    ASVa = b = 8.674, c = 13.919α = β = γ = 904.02791323.90.1923
    BOFa = 7.503, b = 12.773, c = 13.706α = β = γ = 904.18321408.00.2207
    FERa = 19.018, b = 14.303, c = 7.541α = β = γ = 904.28931545.50.2375
    下载: 导出CSV

    表 2  吸附质分子和沸石的力场参数

    Table 2.  Force field parameters of adsorbate molecules and zeolites.

    原子(ε/kB)/Kσq/e
    CH4148.03.730
    H2H36.72.9580.468
    com00–0.936
    ZeoliteSi222.31.5
    O533.3–0.75
    下载: 导出CSV
  • [1]

    Nijem N, Veyan J F, Kong L Z, Li K, Pramanik S, Zhao Y, Li J, Langreth D, Chabal Y J 2010 J. Am. Chem. Soc. 132 1654Google Scholar

    [2]

    Liu X B, Li W X, Zhao X D, Fan L Z 2019 Adv. Funct. Mater. 29 1901510Google Scholar

    [3]

    陈玉红, 刘婷婷, 张梅玲, 元丽华, 张材荣 2017 化学学报 75 708Google Scholar

    Chen Y H, Liu T T, Zhang M L, Yuan L H, Zhang C R 2017 Acta Chim. Sin. 75 708Google Scholar

    [4]

    刘秀英, 王朝阳, 唐永建, 孙卫国, 吴卫东, 张厚琼, 刘淼, 袁磊, 徐嘉靖 2009 物理学报 58 1126Google Scholar

    Liu X Y, Wang C Y, Tang Y J, Sun W G, Wu W D, Zhang H Q, Liu M, Yuan L, Xu J J 2009 Acta Phys. Sin. 58 1126Google Scholar

    [5]

    Chen J J, Gao X H, Yan L F, Xu D G 2018 Int. J. Hydrogen Energy 43 12948Google Scholar

    [6]

    LeValley T L, Richard A R, Fan M H 2014 Int. J. Hydrogen Energy 39 16983Google Scholar

    [7]

    Yang Q Y, Wiersum A D, Jobic H, Guillerm V, Serre C, Llewellyn P L, Maurin G 2011 J. Phys. Chem. C 115 13768Google Scholar

    [8]

    Bastos-Neto M, Patzschke C, Lange M, Guillerm V, Serre C, Llewellyn P L, Maurin G 2012 Energy Environ. Sci. 5 8294Google Scholar

    [9]

    Zhou D, Cheng Q Y, Cui Y, Wang T, Li X X, Han B H 2014 Carbon 66 592Google Scholar

    [10]

    吴选军, 郑佶, 李江, 蔡卫权 2013 物理化学学报 29 2207Google Scholar

    Wu X J, Zheng J, Li J, Cai W Q 2013 Acta Phys.-Chim. Sin. 29 2207Google Scholar

    [11]

    Chue K T, Kim J N, Yoo Y J, Cho S H, Yang R T 1995 Ind. Eng. Chem. Res. 34 591Google Scholar

    [12]

    Ho M T, Allinson G W, Wiley D E 2008 Ind. Eng. Chem. Res. 47 1562Google Scholar

    [13]

    Li Y, Yu J H 2014 Chem. Rev. 114 7268Google Scholar

    [14]

    Li J Y, Corma A, Yu J H 2015 Chem. Soc. Rev. 44 7112Google Scholar

    [15]

    Weckhuysen B M, Yu J H 2015 Chem. Soc. Rev. 44 7022Google Scholar

    [16]

    Ferri P, Li C G, Paris C, Vidal-Moya A, Moliner M, Boronat M, Corma A 2019 ACS Catal. 9 11542Google Scholar

    [17]

    Margarit V J, Osman M, Al-Khattaf S, Martínez C, Boronat M, Corma A 2019 ACS Catal. 9 5935Google Scholar

    [18]

    McCusker L B, Liebau F, Engelhardt G 2001 Pure Appl. Chem. 73 381Google Scholar

    [19]

    Li Y, Cao H, Yu J H 2018 ACS Nano 12 4096Google Scholar

    [20]

    Stückenschneider K, Merz J, Schembecker G 2013 J. Mol. Model. 19 5611Google Scholar

    [21]

    Fu H, Wang Y J, Zhang T H, Yang C H, Shan H H 2017 J. Phys. Chem. C 121 25818Google Scholar

    [22]

    Perez-Carbajo J, Gómez-Álvarez P, Bueno-Perez R, Merkling P J, Calero S 2014 Phys. Chem. Chem. Phys. 16 5678Google Scholar

    [23]

    刘秀英, 李晓凤, 张丽英, 樊志琴, 马兴科 2012 物理学报 61 146802Google Scholar

    Liu X Y, Li X F, Zhang L Y, Fan Z Q, Ma X K 2012 Acta Phys. Sin. 61 146802Google Scholar

    [24]

    Curtarolo S, Hart G L W, Nardelli M B, Mingo N, Sanvito S, Levy O 2013 Nat. Mater. 12 191Google Scholar

    [25]

    刘治鲁, 李炜, 刘昊, 庄旭东, 李松 2019 化学学报 77 323Google Scholar

    Liu Z L, Li W, Liu H, Zhuang X D, Li S 2019 Acta Chim. Sin. 77 323Google Scholar

    [26]

    Wollmann P, Leistner M, Stoeck U, Grünker R, Gedrich K, Klein N, Throl O, Grählert W, Senkovska I, Dreisbach F, Kaskel S 2011 Chem. Commun. 47 5151Google Scholar

    [27]

    Database of Zeolite Structures http://www.iza-structure.org/databases/

    [28]

    Martin R L, Smit B, Haranczyk M 2012 J. Chem. Inf. Model. 52 308Google Scholar

    [29]

    Pinheiro M, Martin R L, Rycroft C H, Jones A, Iglesia E, Haranczyk M 2013 J. Mol. Graphics Modell. 44 208Google Scholar

    [30]

    Bai P, Tsapatsis M, Siepmann J I 2013 J. Phys. Chem. C 117 24375Google Scholar

    [31]

    Goodbody S J, Watanabe K, MacGowan D, Walton J P R B, Quirke N 1991 Faraday Trans. 87 1951Google Scholar

    [32]

    Levesque D, Gicquel A, Darkrim F L, Kayiran S B 2002 J. Phys. Condens. Matter 14 9285Google Scholar

    [33]

    Peng X, Cheng X, Cao D P 2011 J. Mater. Chem. 21 11259Google Scholar

    [34]

    Dubbeldam D, Torres-Knoop A, Walton K S 2013 Mol. Simulat. 39 1253Google Scholar

    [35]

    Dubbeldam D, Snurr R Q 2007 Mol. Simul. 33 305Google Scholar

    [36]

    Bao Z B, Alnemrat S, Yu L, Vasiliev I, Ren Q L, Lu X Y, Deng S G 2011 Langmuir 27 13554Google Scholar

计量
  • 文章访问数:  5199
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-15
  • 修回日期:  2021-03-08
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-05

/

返回文章
返回