搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于第一性原理的二维材料黑磷砷气体传感器的机理研究

徐强 段康 谢浩 张秦蓉 梁本权 彭祯凯 李卫

引用本文:
Citation:

基于第一性原理的二维材料黑磷砷气体传感器的机理研究

徐强, 段康, 谢浩, 张秦蓉, 梁本权, 彭祯凯, 李卫

First principle study on gas sensor mechanism of black-AsP monolayer

Xu Qiang, Duan Kang, Xie Hao, Zhang Qin-Rong, Liang Ben-Quan, Peng Zhen-Kai, Li Wei
PDF
HTML
导出引用
  • 通过密度泛函理论计算, 研究了气体小分子吸附在单层黑磷砷表面的电学和磁学特性. 选择4个初始吸附点位来探索CO, CO2, NH3, SO2, NO和NO2气体分子最优的吸附位置, 计算了吸附能、吸附距离和电荷转移等电子结构参数, 确定了吸附类型和敏感气体. 结果表明, 单层黑磷砷以强的物理吸附对NO2和SO2气体敏感, 而通过化学吸附对NO气体敏感并且N原子和P原子间还形成新的化学键. 从能带结构角度, CO, CO2和NH3这三种气体吸附对黑磷砷的能带结构影响很小, SO2气体吸附增大带隙宽度. 磁性气体NO 和NO2的吸附则在费米能级附近引入杂质能带, 这主要来源于N原子和O原子的p轨道, 并且减小了带隙宽度. NO和NO2气体还分别诱导了0.83μB和0.78μB的磁矩, 使得整个体系带有磁性. 理论研究表明, 单层黑磷砷是检测NO, NO2和SO2气体的良好气敏材料.
    Since the successful synthesis of graphene, two-dimensional materials, including hexagonal boron nitride and transition mental dichalcogenides, have attracted wide attention due to their extraordinary properties and extensive applications. Recent researches have revealed that the sensing system based on graphene or MoS2 can efficiently sense various gas molecules. However, the utility of these materials is limited by their inherent weakness, i.e. the zero bandgap in graphene and the relatively low mobility in MoS2, which impede their applications in electronic devices. This further stimulates the motivation of researchers to find more novel 2D materials. Black arsenic phosphide (AsP) monolayer, a novel two-dimensional nanomaterial with the characteristics of model direct bandgap and superhigh carrier mobility, is an ideal material for gas sensor. Here in this work, we investigate the electronic and magnetic properties of monolayer AsP absorbed with small gas molecules by using first-principle calculations based on density functional theory. Four initial absorption sites are selected to explore the optimal absorption positions of CO, CO2, NH3, SO2, NO and NO2 absorbed on the monolayer AsP. The purpose is to calculate the optimal absorption configurations, the absorption energy, absorption distance, and charge transfer, thereby investigating the absorption types. The results revel that the monolayer AsP is sensitive to NO2 gas and SO2 gas via strong physical absorption, and NO gas by chemical absorption, forming a new bond between N atom and O atom. The CO, CO2 and NH3 gas are absorbed on AsP monolayer with weak van Waals force. From the point of view of charge transfer, the CO, CO2, and NH3 molecules are one order of magnitude smaller than SO2, NO and NO2, approximately 0.03e and the charge transfer of NO gas is 0.21e, highest in all gases. Besides, the effects of absorption on the electrons of AsP are investigated. The results show that the absorption of CO, CO2 and NH3 molecules have little effect on band structure, and that the absorption of SO2 molecule increases the bandgap. The absorption of magnetic gas NO and NO2 reduce the bandgap by introducing impurity level near Fermi level, giving rise to their magnetic moments of 0.83μB and 0.78μB and making the whole system magnetic. Theoretical research shows that monolayer AsP is sensitive to NO, NO2 and SO2 gas molecules, which provides theoretical guidance for the experimental preparation of gas sensors band on black arsenic phosphorus.
      通信作者: 李卫, liw@njupt.edu.cn
    • 基金项目: 中国博士后科学基金 (批准号: 2018T110480)、江苏省高等学校自然科学基金(批准号: 20KJA510001)、华南理工大学发光材料与器件国家重点实验室开放基金(批准号: 2020-skllmd-03)、东南大学毫米波国家重点实验室开放基金(批准号: K202003)、南京大学固体微结构物理国家重点实验室开放基金(批准号: M32001)和江苏省光通信工程技术研究中心开放基金(批准号: ZXF201904)资助的课题
      Corresponding author: Li Wei, liw@njupt.edu.cn
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant No. 2018T110480), the Natural Science Foundation of Institutions of Higher Education of Jiangsu Province, China (Grant No. 20KJA510001), the Open Fund of State Key Laboratory of Luminescent Materials and Devices of South China of Technology, China (Grant No. 2020-skllmd-03), the Open Fund of State Key Laboratory of Millimeter Waves of Southeast University, China (Grant No. K202003), the Open Fund of State Key Laboratory of Solid Microstructure Physics of Nanjing University, China (Grant No. M32001), and the Open Fund of Jiangsu Optical Communication Engineering Technology Research Center, China (Grant No. ZXF201904)
    [1]

    Kong J, Franklin N R, Zhou C, Chapline M G, Peng S, Cho K, Dai H 2000 Science 287 622Google Scholar

    [2]

    Bao H, Yu S, Tong D Q 2010 Nature 465 909Google Scholar

    [3]

    Esrafili M D 2019 Phys. Lett. A 383 1607Google Scholar

    [4]

    Chen X, Shen Y, Zhou P, Zhao S, Zhong X, Li T, Han C, Wei D, Meng D 2019 Sens. Actuators, B 280 151Google Scholar

    [5]

    Li W, Ding C, Li J, Ren Q, Bai G, Xu J 2020 Appl. Surf. Sci. 502 144140Google Scholar

    [6]

    丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋 2018 物理学报 67 213102Google Scholar

    Ding C, Li W, Liu J Y, Wang L L, Cai Y, Pan P F 2018 Acta Phys. Sin. 67 213102Google Scholar

    [7]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [8]

    Mousavi H 2011 Commun. Theor. Phys. 56 373Google Scholar

    [9]

    Xia W, Hu W, Li Z, Yang J 2014 Phys. Chem. Chem. Phys. 16 22495Google Scholar

    [10]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [11]

    Huang B, Li Z, Liu Z, Zhou G, Hao S, Wu J, Gu B L, Duan W 2008 J. Phys. Chem. C 112 13442Google Scholar

    [12]

    Sarkar D, Xie X, Kang J, Zhang H, Liu W, Navarrete J, Moskovits M, Banerjee K 2015 Nano Lett. 15 2852Google Scholar

    [13]

    Tian X Q, Liu L, Wang X R, Wei Y D, Gu J, Du Y, Yakobson B I 2017 J. Mater. Chem. C 5 1463Google Scholar

    [14]

    Zhang Y H, Chen Y B, Zhou K G, Liu C H, Zeng J, Zhang H L, Peng Y 2009 Nanotechnology 20 185504Google Scholar

    [15]

    Yuan W, Shi G 2013 J. Mater. Chem. A 1 10078Google Scholar

    [16]

    Kaasbjerg K, Thygesen K S, Jacobsen K W 2012 Phys. Rev. B 85 115317Google Scholar

    [17]

    Zhou L, Kou L, Sun Y, Felser C, Hu F, Shan G, Smith S C, Yan B, Frauenheim T 2015 Nano Lett. 15 7867Google Scholar

    [18]

    Eswaraiah V, Zeng Q, Long Y, Liu Z 2016 Small 12 3480Google Scholar

    [19]

    Jyothi M S, Nagarajan V, Chandiramouli R 2020 Chem. Phys. 538 110896Google Scholar

    [20]

    Kou L, Frauenheim T, Chen C 2014 J. Phys. Chem. Lett. 5 2675Google Scholar

    [21]

    Osters O, Nilges T, Bachhuber F, Pielnhofer F, Weihrich R, Schöneich M, Schmidt P 2012 Angew. Chem. Int. Ed. 51 2994Google Scholar

    [22]

    Yang A, Wang D, Wang X, Zhang D, Koratkar N, Rong M 2018 Nano Today 20 13Google Scholar

    [23]

    Jing Y, Ma Y, Li Y, Heine T 2017 Nano Lett. 17 1833Google Scholar

    [24]

    Niu F, Cai M, Pang J, Li X, Yang D, Zhang G 2019 Vacuum 168 108823Google Scholar

    [25]

    Zhu Z, Guan J, Liu D, Tománek D 2015 ACS Nano 9 8284Google Scholar

    [26]

    Guo S, Zhang Y, Ge Y, Zhang S, Zeng H, Zhang H 2019 Adv. Mater. 31 e1902352Google Scholar

    [27]

    He Y, Xiong S, Xia F, Shao Z, Zhao J, Zhang X, Jie J, Zhang X 2018 Phys. Rev. B 97 085119Google Scholar

    [28]

    Kocabas T, Cakir D, Gulseren O, Ay F, Kosku Perkgoz N, Sevik C 2018 Nanoscale 10 7803Google Scholar

    [29]

    Liu X, Ni Y X, Wang H Y, Wang H 2020 Chin J. Chem. Phys. 33 311Google Scholar

    [30]

    Tang J P, Xiao W Z, Wang L L 2018 Mater. Sci. Eng., B 228 206Google Scholar

    [31]

    Xiao W Z, Xiao G, Rong Q Y, Wang L L 2018 Mater. Res. Express 5 035903Google Scholar

    [32]

    Liu B, Köpf M, Abbas A N, Wang X, Guo Q, Jia Y, Xia F, Weihrich R, Bachhuber F, Pielnhofer F, Wang H, Dhall R, Cronin S B, Ge M, Fang X, Nilges T, Zhou C 2015 Adv. Mater. 27 4423Google Scholar

    [33]

    Krebs H, Holz W, Worms K H 1957 Chem. Ber. 90 1031Google Scholar

    [34]

    Yu W, Niu C Y, Zhu Z, Wang X, Zhang W B 2016 J. Mater. Chem. C 4 6581Google Scholar

    [35]

    Xie M, Zhang S, Cai B, Huang Y, Zou Y, Guo B, Gu Y, Zeng H 2016 Nano Energy 28 433Google Scholar

    [36]

    Imai Y, Mukaida M, Tsunoda T 2001 Thin Solid Films 381 176Google Scholar

    [37]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [38]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [39]

    Setyawan W, Curtarolo S 2010 Comput. Mater. Sci. 49 299Google Scholar

    [40]

    Hirshfeld F L 1977 Theor. Chim. Acta 44 129Google Scholar

    [41]

    Liu C, Liu C S, Yan X 2017 Phys. Lett. A 381 1092Google Scholar

    [42]

    Heyd J, Scuseria G E 2003 J. Chem. Phys. 118 8207Google Scholar

    [43]

    Abbas A N, Liu B, Chen L, Ma Y, Cong S, Aroonyadet N, Köpf M, Nilges T, Zhou C 2015 ACS Nano 9 5618Google Scholar

    [44]

    Bai L, Zhou Z 2007 Carbon 45 2105Google Scholar

    [45]

    Lee S Y, Ito E, Kang H, Hara M, Lee H, Noh J 2014 J. Phys. Chem. C 118 8322Google Scholar

  • 图 1  (a)黑磷砷的顶部和侧面图; (b) 本征黑磷砷的能带图

    Fig. 1.  (a) Illustration of top and side view of AsP monolayer; (b) electronic band of pristine AsP.

    图 2  (a) 4个不同吸附点位图; (b) CO, (c) CO2, (d) NH3, (e) SO2, (f) NO, (g) NO2气体在单层AsP上的吸附图

    Fig. 2.  (a) Schematic diagram of four different absorption sites; the most favorable configurations of monolayer AsP with (b) CO, (c) CO2, (d) NH3, (e) SO2, (f) NO and (g) NO2 absorption.

    图 3  CO, CO2, NH3, SO2, NO, NO2与单层AsP之间的吸附距离和吸附能

    Fig. 3.  Absorption distance and absorption energy for CO, CO2, NH3, SO2, NO and NO2 on AsP monolayer.

    图 4  (a) CO, (b) CO2, (c) NH3和(d) SO2吸附在单层AsP表面的能带结构; (e), (f) NO和 (g), (h) NO2吸附在单层AsP表面的能带结构图, 其中黑线和蓝线分别表示自旋向上和自旋向下的能带结构

    Fig. 4.  Band structure of (a) CO, (b) CO2, (c) NH3 and (d) SO2 absorbed on AsP monolayer; the band structure of (e), (f) NO and (g), (h) NO2 absorbed on AsP monolayer, where the black and blue line represent the band structure of spin-up and spin-down, respectively.

    图 5  (a) CO, (b) CO2, (c) NH3, (d) SO2, (e) NO和(f) NO2吸附在单层AsP上的态密度和分态密度图, 其中黑线和红线分别是原始AsP的态密度和吸附气体后的态密度图

    Fig. 5.  Density of states (DOS) of (a) CO, (b) CO2, (c) NH3, (d) SO2, (e) NO and (f) NO2 absorbed on AsP monolayer, respectively. The black and red line represent the DOS of pristine AsP and gases absorbed on AsP.

    表 1  不同气体吸附的吸附能、转移电荷数量、气体分子的磁矩和恢复时间, 括号里数值是与Mulliken分析法对比的结果

    Table 1.  The absorption energy (Ead), the charge transfer from basic material to gas molecule (ρ), the local magnetic on gas molecule (Spin) and the recovery time (τ) for gas desorption from material. The values in brackets are the results of comparison with Mulliken analysis.

    气体Ead /eVρ/eSpin/ μBτ/s
    CO–0.135–0.03 (0.02)01.8 × 10–10
    CO2–0.156–0.01 (–0.04)04.03 × 10–10
    NH3–0.131–0.02 (–0.04)01.5 × 10–10
    SO2–0.363–0.15 (0.05)01.2 × 10–6
    NO–0.79–0.21 (–0.20)0.8315.7
    NO2–0.46–0.14 (–0.01)0.784.8 × 10–5
    下载: 导出CSV
  • [1]

    Kong J, Franklin N R, Zhou C, Chapline M G, Peng S, Cho K, Dai H 2000 Science 287 622Google Scholar

    [2]

    Bao H, Yu S, Tong D Q 2010 Nature 465 909Google Scholar

    [3]

    Esrafili M D 2019 Phys. Lett. A 383 1607Google Scholar

    [4]

    Chen X, Shen Y, Zhou P, Zhao S, Zhong X, Li T, Han C, Wei D, Meng D 2019 Sens. Actuators, B 280 151Google Scholar

    [5]

    Li W, Ding C, Li J, Ren Q, Bai G, Xu J 2020 Appl. Surf. Sci. 502 144140Google Scholar

    [6]

    丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋 2018 物理学报 67 213102Google Scholar

    Ding C, Li W, Liu J Y, Wang L L, Cai Y, Pan P F 2018 Acta Phys. Sin. 67 213102Google Scholar

    [7]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [8]

    Mousavi H 2011 Commun. Theor. Phys. 56 373Google Scholar

    [9]

    Xia W, Hu W, Li Z, Yang J 2014 Phys. Chem. Chem. Phys. 16 22495Google Scholar

    [10]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [11]

    Huang B, Li Z, Liu Z, Zhou G, Hao S, Wu J, Gu B L, Duan W 2008 J. Phys. Chem. C 112 13442Google Scholar

    [12]

    Sarkar D, Xie X, Kang J, Zhang H, Liu W, Navarrete J, Moskovits M, Banerjee K 2015 Nano Lett. 15 2852Google Scholar

    [13]

    Tian X Q, Liu L, Wang X R, Wei Y D, Gu J, Du Y, Yakobson B I 2017 J. Mater. Chem. C 5 1463Google Scholar

    [14]

    Zhang Y H, Chen Y B, Zhou K G, Liu C H, Zeng J, Zhang H L, Peng Y 2009 Nanotechnology 20 185504Google Scholar

    [15]

    Yuan W, Shi G 2013 J. Mater. Chem. A 1 10078Google Scholar

    [16]

    Kaasbjerg K, Thygesen K S, Jacobsen K W 2012 Phys. Rev. B 85 115317Google Scholar

    [17]

    Zhou L, Kou L, Sun Y, Felser C, Hu F, Shan G, Smith S C, Yan B, Frauenheim T 2015 Nano Lett. 15 7867Google Scholar

    [18]

    Eswaraiah V, Zeng Q, Long Y, Liu Z 2016 Small 12 3480Google Scholar

    [19]

    Jyothi M S, Nagarajan V, Chandiramouli R 2020 Chem. Phys. 538 110896Google Scholar

    [20]

    Kou L, Frauenheim T, Chen C 2014 J. Phys. Chem. Lett. 5 2675Google Scholar

    [21]

    Osters O, Nilges T, Bachhuber F, Pielnhofer F, Weihrich R, Schöneich M, Schmidt P 2012 Angew. Chem. Int. Ed. 51 2994Google Scholar

    [22]

    Yang A, Wang D, Wang X, Zhang D, Koratkar N, Rong M 2018 Nano Today 20 13Google Scholar

    [23]

    Jing Y, Ma Y, Li Y, Heine T 2017 Nano Lett. 17 1833Google Scholar

    [24]

    Niu F, Cai M, Pang J, Li X, Yang D, Zhang G 2019 Vacuum 168 108823Google Scholar

    [25]

    Zhu Z, Guan J, Liu D, Tománek D 2015 ACS Nano 9 8284Google Scholar

    [26]

    Guo S, Zhang Y, Ge Y, Zhang S, Zeng H, Zhang H 2019 Adv. Mater. 31 e1902352Google Scholar

    [27]

    He Y, Xiong S, Xia F, Shao Z, Zhao J, Zhang X, Jie J, Zhang X 2018 Phys. Rev. B 97 085119Google Scholar

    [28]

    Kocabas T, Cakir D, Gulseren O, Ay F, Kosku Perkgoz N, Sevik C 2018 Nanoscale 10 7803Google Scholar

    [29]

    Liu X, Ni Y X, Wang H Y, Wang H 2020 Chin J. Chem. Phys. 33 311Google Scholar

    [30]

    Tang J P, Xiao W Z, Wang L L 2018 Mater. Sci. Eng., B 228 206Google Scholar

    [31]

    Xiao W Z, Xiao G, Rong Q Y, Wang L L 2018 Mater. Res. Express 5 035903Google Scholar

    [32]

    Liu B, Köpf M, Abbas A N, Wang X, Guo Q, Jia Y, Xia F, Weihrich R, Bachhuber F, Pielnhofer F, Wang H, Dhall R, Cronin S B, Ge M, Fang X, Nilges T, Zhou C 2015 Adv. Mater. 27 4423Google Scholar

    [33]

    Krebs H, Holz W, Worms K H 1957 Chem. Ber. 90 1031Google Scholar

    [34]

    Yu W, Niu C Y, Zhu Z, Wang X, Zhang W B 2016 J. Mater. Chem. C 4 6581Google Scholar

    [35]

    Xie M, Zhang S, Cai B, Huang Y, Zou Y, Guo B, Gu Y, Zeng H 2016 Nano Energy 28 433Google Scholar

    [36]

    Imai Y, Mukaida M, Tsunoda T 2001 Thin Solid Films 381 176Google Scholar

    [37]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [38]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [39]

    Setyawan W, Curtarolo S 2010 Comput. Mater. Sci. 49 299Google Scholar

    [40]

    Hirshfeld F L 1977 Theor. Chim. Acta 44 129Google Scholar

    [41]

    Liu C, Liu C S, Yan X 2017 Phys. Lett. A 381 1092Google Scholar

    [42]

    Heyd J, Scuseria G E 2003 J. Chem. Phys. 118 8207Google Scholar

    [43]

    Abbas A N, Liu B, Chen L, Ma Y, Cong S, Aroonyadet N, Köpf M, Nilges T, Zhou C 2015 ACS Nano 9 5618Google Scholar

    [44]

    Bai L, Zhou Z 2007 Carbon 45 2105Google Scholar

    [45]

    Lee S Y, Ito E, Kang H, Hara M, Lee H, Noh J 2014 J. Phys. Chem. C 118 8322Google Scholar

  • [1] 葛一璇, 于婷婷, 梁文杰. 原位合成方法制备超灵敏和高特异性的微型氢气传感器. 物理学报, 2024, 73(2): 020701. doi: 10.7498/aps.73.20231265
    [2] 赵俊, 姚璨, 曾晖. 新型正交相BN单层半导体有毒气体吸附性能及电输运性能的理论研究. 物理学报, 2024, 73(12): 126802. doi: 10.7498/aps.73.20231621
    [3] 吴宇阳, 李卫, 任青颖, 李金泽, 许巍, 许杰. 金属Sc修饰Ti2CO2吸附气体分子的第一性原理研究. 物理学报, 2024, 73(7): 073101. doi: 10.7498/aps.73.20231432
    [4] 莫秋燕, 张颂, 荆涛, 张泓筠, 李先绪, 吴家隐. CuSe表面修饰的第一性原理研究. 物理学报, 2023, 72(12): 127301. doi: 10.7498/aps.72.20230093
    [5] 董逸蒙, 孙永娇, 侯煜晨, 王炳亮, 陆志远, 张文栋, 胡杰. SnO2/ZnS异质结气体传感器的制备及其室温NO2敏感特性. 物理学报, 2023, 72(16): 160701. doi: 10.7498/aps.72.20230735
    [6] 张如轩, 宗肖航, 于婷婷, 葛一璇, 胡适, 梁文杰. 基于纳米传感器矩阵的混合气体组分探测与识别. 物理学报, 2022, 71(18): 180702. doi: 10.7498/aps.71.20220955
    [7] 侯璐, 童鑫, 欧阳钢. 一维carbyne链原子键性质应变调控的第一性原理研究. 物理学报, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [8] 张国英, 焦兴强, 刘业舒, 张安国, 孟春雪. 缺陷与掺杂共存的黑磷烯甲醛传感行为的电子理论. 物理学报, 2020, 69(23): 237101. doi: 10.7498/aps.69.20200990
    [9] 艾雯, 胡小会, 潘林, 陈长春, 王一峰, 沈晓冬. 二维材料WTe2用于气体传感器的性能研究. 物理学报, 2019, 68(19): 197101. doi: 10.7498/aps.68.20190642
    [10] 高云亮, 朱芫江, 李进平. Al辐照损伤初期的第一性原理研究. 物理学报, 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
    [11] 苗银萍, 靳伟, 杨帆, 林粤川, 谭艳珍, 何海律. 光纤光热干涉气体检测技术研究进展. 物理学报, 2017, 66(7): 074212. doi: 10.7498/aps.66.074212
    [12] 代月花, 潘志勇, 陈真, 王菲菲, 李宁, 金波, 李晓风. 基于HfO2的阻变存储器中Ag导电细丝方向和浓度的第一性原理研究. 物理学报, 2016, 65(7): 073101. doi: 10.7498/aps.65.073101
    [13] 孙小亮, 陈长虹, 孟德佳, 冯士高, 于洪浩. 复合金属光栅模式分离与高性能气体传感器应用. 物理学报, 2015, 64(14): 147302. doi: 10.7498/aps.64.147302
    [14] 蒋先伟, 鲁世斌, 代广珍, 汪家余, 金波, 陈军宁. 电荷俘获存储器数据保持特性第一性原理研究. 物理学报, 2015, 64(21): 213102. doi: 10.7498/aps.64.213102
    [15] 代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦. HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究. 物理学报, 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [16] 谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新. 碳、氧、硫掺杂二维黑磷的第一性原理计算. 物理学报, 2014, 63(20): 207301. doi: 10.7498/aps.63.207301
    [17] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算. 物理学报, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [18] 朱建新, 李永华, 孟繁玲, 刘常升, 郑伟涛, 王煜明. NiTi合金的第一性原理研究. 物理学报, 2008, 57(11): 7204-7209. doi: 10.7498/aps.57.7204
    [19] 姚红英, 顾 晓, 季 敏, 张笛儿, 龚新高. SiO2-羟基表面上金属原子的第一性原理研究. 物理学报, 2006, 55(11): 6042-6046. doi: 10.7498/aps.55.6042
    [20] 潘志军, 张澜庭, 吴建生. CoSi电子结构第一性原理研究. 物理学报, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
计量
  • 文章访问数:  7543
  • PDF下载量:  204
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-19
  • 修回日期:  2021-03-16
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-05

/

返回文章
返回