搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属Sc修饰Ti2CO2吸附气体分子的第一性原理研究

吴宇阳 李卫 任青颖 李金泽 许巍 许杰

引用本文:
Citation:

金属Sc修饰Ti2CO2吸附气体分子的第一性原理研究

吴宇阳, 李卫, 任青颖, 李金泽, 许巍, 许杰

First-principles study on adsorption of gas molecules by metal Sc modified Ti2CO2

Wu Yu-Yang, Li Wei, Ren Qing-Ying, Li Jin-Ze, Xu Wei, Xu Jie
PDF
HTML
导出引用
  • 基于第一性原理计算研究了Ti2CO2和金属Sc修饰的Ti2CO2的几何结构和电子性质, 分析了不同有害气体(CO, NH3, NO, SO2, CH4, H2S)在这两种材料表面的吸附过程, 讨论了金属修饰对Ti2CO2二维过渡金属碳化物(MXene)电子性能和气体吸附性能的影响. 计算结果表明, Sc原子位于空心位C原子上方的结构具有较大的结合能, 但小于固体Sc的内聚能实验值(3.90 eV), Sc原子可以有效避免成簇. 表面Sc金属为气体吸附提供了活性位点. 通过分析不同气体的最佳吸附点位、吸附能等参数, 分析金属Sc修饰的Ti2CO2对这些气体的吸附效果. 其中对SO2的吸附效果更好, 吸附能从–0.314 eV提升到–2.043 eV, 其他气体的吸附效果均有改善. 通过电荷转移、态密度和功函数等参数解释了其吸附能增加的原因. 由于在表面引入了新的原子, 增大了材料的载流子密度和载流子迁移率, 从而提高了材料表面的电荷转移, 为金属Sc修饰的Ti2CO2材料的气敏性能提供理论参考.
    MXene materials have received increasing attention due to their unique properties and potential applications. Ti2CO2, as a typical MXene material that has been prepared, has been widely studied. The adsorption characteristics of two-dimensional materials for gas molecules can be significantly improved through transition metal modification. However, there are few studies on the use of transition metals to modify Ti2CO2. In this work, the adsorption processes of different harmful gases (CO, NH3, NO, SO2, CH4, H2S) on the surfaces of these two materials, i.e. Ti2CO2 and metal Sc modified Ti2CO2, are studied and analyzed based on first-principles density functional theory and generalized gradient method. The geometric optimization calculation of the metal-modified adsorption harmful gas structure is carried out, and the kinetic energy cutoff energy of the plane wave basis set is taken as 450 eV. The calculation results show that the structure in which Sc atoms are located above the C atoms in the hollow position has a large binding energy, but it is smaller than the experimental value of the cohesive energy of solid Sc (3.90 eV). Sc atoms can effectively avoid clustering. Surface Sc metal provides active sites for gas adsorption. By analyzing the optimal adsorption points, adsorption energy and other parameters of different gases, the adsorption effects of metal Sc-modified Ti2CO2 on these gases are analyzed. Among them, the adsorption effect of SO2 is better, the adsorption energy is increased from –0.314 eV to –2.043 eV, and the adsorption effects of other gases are improved. Due to the introduction of new atoms on the surface of Ti2CO2, the carrier density and carrier mobility of the material are increased, thereby improving the charge transfer on the surface of the material, which is beneficial to its sensitivity to gas molecules. The results of density of states and work function further verify that the carrier density and carrier mobility of Sc-Ti2CO2 are increased, which is beneficial to gas adsorption. It is expected that the metal Sc-modified Ti2CO2 becomes an excellent gas-sensing material for the detection of CO, NH3, NO, SO2, CH4 and H2S, and the present work can provide a reference for theoretically studying the gas-sensing performance of metal Sc-modified Ti2CO2 materials.
      通信作者: 李卫, liw@njupt.edu.cn
    • 基金项目: 江苏省高等学校自然科学研究重大项目(批准号: 20KJA510001)、江苏省“六大人才”高峰高层次人才计划和江苏省高校青蓝工程中青年学术带头人计划资助的课题.
      Corresponding author: Li Wei, liw@njupt.edu.cn
    • Funds: Project supported by the Major Project of Natural Science Research in Universities of Jiangsu Province, China (Grant No. 20KJA510001), the “Six Talents” High-level Talent Program of Jiangsu Province, and the Young and Middle-aged Academic Leader Program of Jiangsu University Blue Project, China.
    [1]

    徐强, 段康, 谢浩, 张秦蓉, 梁本权, 彭祯凯, 李卫 2021 物理学报 70 157101Google Scholar

    Xu Q, Duan K, Xie H, Zhang Q R, Liang B Q, Peng Z K, Li W 2021 Acta Phys. Sin. 70 157101Google Scholar

    [2]

    丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋 2018 物理学报 67 213102Google Scholar

    Ding C, Li W, Liu J Y, Wang L L, Cai Y, Pan P F 2018 Acta Phys. Sin. 67 213102Google Scholar

    [3]

    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Barsoum M W 2011 Adv. Mater. 23 4248Google Scholar

    [4]

    Anasori B, Lukatskaya M R, Gogotsi Y 2017 Nat. Rev. Mater. 2 1

    [5]

    Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y 2014 Adv. Mater. 26 992Google Scholar

    [6]

    Verger L, Natu V, Carey M, Barsoum M W 2019 Trends Chem. 1 656Google Scholar

    [7]

    Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y 2017 Chem. Mater. 29 7633Google Scholar

    [8]

    Chen J, Chen K, Tong D Y, Huang Y J, Zhang J W, Xue J M, Chen T 2015 Chem. Commun. 51 314Google Scholar

    [9]

    Xu B Z, Zhu M S, Zhang W C, Zhen X, Pei Z X, Xue Q, Zhi C Y, Shi P 2016 Advanced Materials. 28 3411Google Scholar

    [10]

    Li N, Chen X, Ong W J, MacFarlane D R, Zhao X, Cheetham A K, Sun C 2017 Acs Nano 11 10825Google Scholar

    [11]

    Azofra L M, Li N, MacFarlane D R, Sun C 2016 Energy Environ. Sci. 9 2545Google Scholar

    [12]

    Ren C E, Zhao M Q, Makaryan T, Halim J, Boota M, Kota S, Gogotsi Y 2016 Chem. Electro. Chem. 3 689Google Scholar

    [13]

    Huang K, Li Z, Lin J, Han G, Huang P 2018 Chem. Soc. Rev. 47 5109Google Scholar

    [14]

    Lee E, VahidMohammadi A, Prorok B C, Yoon Y S, Beidaghi M, Kim D J 2017 ACS Appl. Mater. Interfaces 9 37184Google Scholar

    [15]

    Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Barsoum M W 2012 ACS Nano 6 1322Google Scholar

    [16]

    Tang Q, Zhou Z, Shen P W 2012 J. Am. Chem. So. 134 16909Google Scholar

    [17]

    Xie Y, Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y, Yu X, Kent P R 2014 J. Am. Chem. So. 136 6385Google Scholar

    [18]

    Zhang Y Q, Zha X H, Luo K, Qiu N X, Zhou Y H, He J, Chai Z F, Huang Z R, Huang Q, Liang Y X, Du S Y 2019 J. Phys. Chem. C 123 6802Google Scholar

    [19]

    Li X H, Zhang R Z, Cui H L 2020 ACS Omega 5 18403Google Scholar

    [20]

    Zhang X, Zhang Z H, Li J L, Zhao X D, Wu D H, Zhou Z 2017 J. Mater. Chem. A 5 12899Google Scholar

    [21]

    Yu X F, Li Y C, Cheng J B, Liu Z B, Li Q Z, Li W Z, Xiao B 2015 ACS Appl. Mater. Interfaces 7 13707Google Scholar

    [22]

    谢浩, 李卫, 任青颖, 郑加金, 解其云, 王祥夫 2023 微纳电子技术 60 549

    Xie H, Li W, Ren Q Y, Zheng J J, Xie Q Y, Wang X F 2023 Micronanoelectron. Tech. 60 549

    [23]

    Zhao J, Li W, Feng Y, Li J, Bai G, Xu J 2020 Appl. Phys. A 126 1Google Scholar

    [24]

    Zhu C, Liang J X, Wang Y G, Li J 2022 Chin. J. Catal. 43 1830Google Scholar

    [25]

    Hussain T, Vovusha H, Kaewmaraya T, Karton A, Amornkitbamrung V, Ahuja R 2018 Nanotechnology 29 415502Google Scholar

    [26]

    Segall M D, Lindan P J, Probert M A, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys-Cond. Mat. 14 2717Google Scholar

    [27]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671Google Scholar

    [28]

    Zhou Q X, Wang L, Ju W W, Zhao Z H, Hou J, Yong Y L, Miao H Y 2023 Phys. Lett. A 477 128919Google Scholar

    [29]

    Sun Q, Wang Q, Jena P, Kawazoe Y 2005 J. Am. Chem. So. 127 14582Google Scholar

    [30]

    Philipsen P H T, Baerends E J 2006 Phys. Rev. B 54 5326

    [31]

    王怡然, 王丽芳, 袁东玉, 孔月月, 马淑红 2019 原子与分子物理学报 36 568Google Scholar

    Wang Y R, Wang L F, Yuan D Y, Kong Y Y, Ma S H 2019 J. Atom. Mol. Phys. 36 568Google Scholar

    [32]

    Li X H, Cui H L, Zhang R Z, Li S S 2020 Vacuum 179 109574Google Scholar

    [33]

    Ali S, Xie Z, Xu H 2021 Chem. Phys. Chem. 22 2352Google Scholar

    [34]

    Khazaei M, Arai M, Sasaki T, Ranjbar A, Liang Y, Yunoki S 2015 Phys. Rev. B 92 075411Google Scholar

    [35]

    Peng S, Cho K, Qi P, Dai H 2004 Chem. Phys. Lett. 387 271Google Scholar

  • 图 1  (a) Ti2CO2结构图; (b) Sc-Ti2CO2结构图

    Fig. 1.  (a) Ti2CO2 structure diagram; (b) Sc-Ti2CO2 structure diagram.

    图 2  (a) Sc原子在C顶位和下层Ti顶位; (b) Sc原子在C顶位和上层Ti顶位; (c) Sc原子在下层Ti顶位和上层Ti顶位

    Fig. 2.  (a) Sc atoms on top of C and lower Ti; (b) Sc atoms on top of C and upper Ti; (c) Sc atoms on top of lower Ti and upper Ti.

    图 3  Ti2CO2和Sc-Ti2CO2能带图

    Fig. 3.  Ti2CO2 and Sc-Ti2CO2 energy band map.

    图 4  3个不同吸附点位

    Fig. 4.  Three different adsorption sites.

    图 5  不同气体在Ti2CO2上的吸附图

    Fig. 5.  Adsorption diagram of different gases on Ti2CO2.

    图 6  不同气体在Sc-Ti2CO2上的吸附图

    Fig. 6.  Adsorption diagram of different gases on Sc-Ti2CO2.

    图 7  O2在Sc-Ti2CO2上的吸附图

    Fig. 7.  Adsorption diagram of O2 on Sc-Ti2CO2.

    图 8  气体分子在不同温度下的恢复时间

    Fig. 8.  Recovery time of gas molecules at different temperatures.

    图 9  Sc-Ti2CO2的态密度和分态密度图

    Fig. 9.  Plot of state density and fractal density of Sc-Ti2CO2.

    图 10  不同气体吸附在本征Ti2CO2表面和 Sc-Ti2CO2表面的态密度和分态密度图 (a) CO; (b) NH3; (c) NO; (d) SO2; (e) CH4; (f) H2S

    Fig. 10.  State densities and fractal densities of different gases adsorbed on the surface of intrinsic Ti2CO2 and Sc-Ti2CO2: (a) CO; (b) NH3; (c) NO; (d) SO2; (e) CH4; (f) H2S.

    图 11  不同吸附体系的功函数

    Fig. 11.  Work functions of different adsorption systems.

    表 1  不同气体与Ti2CO2和Sc-Ti2CO2单层间的吸附能和电荷转移

    Table 1.  Adsorption energy and charge transfer between different gases and Ti2CO2 and Sc-Ti2CO2 monolayer.

    基底材料 吸附气体 Ead/eV CT(e)
    Ti2CO2 NO –0.026 0.12
    CO –0.238 0.04
    NH3 –0.108 0.20
    SO2 –0.314 0.04
    CH4 –0.291 0.00
    H2S –0.140 0.04
    Sc-Ti2CO2 NO –1.421 –0.150
    CO –0.735 –0.130
    NH3 –1.385 0.310
    SO2 –2.043 –0.170
    CH4 –0.537 –0.380
    H2S –0.898 0.320
    下载: 导出CSV
  • [1]

    徐强, 段康, 谢浩, 张秦蓉, 梁本权, 彭祯凯, 李卫 2021 物理学报 70 157101Google Scholar

    Xu Q, Duan K, Xie H, Zhang Q R, Liang B Q, Peng Z K, Li W 2021 Acta Phys. Sin. 70 157101Google Scholar

    [2]

    丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋 2018 物理学报 67 213102Google Scholar

    Ding C, Li W, Liu J Y, Wang L L, Cai Y, Pan P F 2018 Acta Phys. Sin. 67 213102Google Scholar

    [3]

    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Barsoum M W 2011 Adv. Mater. 23 4248Google Scholar

    [4]

    Anasori B, Lukatskaya M R, Gogotsi Y 2017 Nat. Rev. Mater. 2 1

    [5]

    Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y 2014 Adv. Mater. 26 992Google Scholar

    [6]

    Verger L, Natu V, Carey M, Barsoum M W 2019 Trends Chem. 1 656Google Scholar

    [7]

    Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y 2017 Chem. Mater. 29 7633Google Scholar

    [8]

    Chen J, Chen K, Tong D Y, Huang Y J, Zhang J W, Xue J M, Chen T 2015 Chem. Commun. 51 314Google Scholar

    [9]

    Xu B Z, Zhu M S, Zhang W C, Zhen X, Pei Z X, Xue Q, Zhi C Y, Shi P 2016 Advanced Materials. 28 3411Google Scholar

    [10]

    Li N, Chen X, Ong W J, MacFarlane D R, Zhao X, Cheetham A K, Sun C 2017 Acs Nano 11 10825Google Scholar

    [11]

    Azofra L M, Li N, MacFarlane D R, Sun C 2016 Energy Environ. Sci. 9 2545Google Scholar

    [12]

    Ren C E, Zhao M Q, Makaryan T, Halim J, Boota M, Kota S, Gogotsi Y 2016 Chem. Electro. Chem. 3 689Google Scholar

    [13]

    Huang K, Li Z, Lin J, Han G, Huang P 2018 Chem. Soc. Rev. 47 5109Google Scholar

    [14]

    Lee E, VahidMohammadi A, Prorok B C, Yoon Y S, Beidaghi M, Kim D J 2017 ACS Appl. Mater. Interfaces 9 37184Google Scholar

    [15]

    Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Barsoum M W 2012 ACS Nano 6 1322Google Scholar

    [16]

    Tang Q, Zhou Z, Shen P W 2012 J. Am. Chem. So. 134 16909Google Scholar

    [17]

    Xie Y, Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y, Yu X, Kent P R 2014 J. Am. Chem. So. 136 6385Google Scholar

    [18]

    Zhang Y Q, Zha X H, Luo K, Qiu N X, Zhou Y H, He J, Chai Z F, Huang Z R, Huang Q, Liang Y X, Du S Y 2019 J. Phys. Chem. C 123 6802Google Scholar

    [19]

    Li X H, Zhang R Z, Cui H L 2020 ACS Omega 5 18403Google Scholar

    [20]

    Zhang X, Zhang Z H, Li J L, Zhao X D, Wu D H, Zhou Z 2017 J. Mater. Chem. A 5 12899Google Scholar

    [21]

    Yu X F, Li Y C, Cheng J B, Liu Z B, Li Q Z, Li W Z, Xiao B 2015 ACS Appl. Mater. Interfaces 7 13707Google Scholar

    [22]

    谢浩, 李卫, 任青颖, 郑加金, 解其云, 王祥夫 2023 微纳电子技术 60 549

    Xie H, Li W, Ren Q Y, Zheng J J, Xie Q Y, Wang X F 2023 Micronanoelectron. Tech. 60 549

    [23]

    Zhao J, Li W, Feng Y, Li J, Bai G, Xu J 2020 Appl. Phys. A 126 1Google Scholar

    [24]

    Zhu C, Liang J X, Wang Y G, Li J 2022 Chin. J. Catal. 43 1830Google Scholar

    [25]

    Hussain T, Vovusha H, Kaewmaraya T, Karton A, Amornkitbamrung V, Ahuja R 2018 Nanotechnology 29 415502Google Scholar

    [26]

    Segall M D, Lindan P J, Probert M A, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys-Cond. Mat. 14 2717Google Scholar

    [27]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671Google Scholar

    [28]

    Zhou Q X, Wang L, Ju W W, Zhao Z H, Hou J, Yong Y L, Miao H Y 2023 Phys. Lett. A 477 128919Google Scholar

    [29]

    Sun Q, Wang Q, Jena P, Kawazoe Y 2005 J. Am. Chem. So. 127 14582Google Scholar

    [30]

    Philipsen P H T, Baerends E J 2006 Phys. Rev. B 54 5326

    [31]

    王怡然, 王丽芳, 袁东玉, 孔月月, 马淑红 2019 原子与分子物理学报 36 568Google Scholar

    Wang Y R, Wang L F, Yuan D Y, Kong Y Y, Ma S H 2019 J. Atom. Mol. Phys. 36 568Google Scholar

    [32]

    Li X H, Cui H L, Zhang R Z, Li S S 2020 Vacuum 179 109574Google Scholar

    [33]

    Ali S, Xie Z, Xu H 2021 Chem. Phys. Chem. 22 2352Google Scholar

    [34]

    Khazaei M, Arai M, Sasaki T, Ranjbar A, Liang Y, Yunoki S 2015 Phys. Rev. B 92 075411Google Scholar

    [35]

    Peng S, Cho K, Qi P, Dai H 2004 Chem. Phys. Lett. 387 271Google Scholar

  • [1] 黄盛星, 陈健, 王文菲, 王旭东, 姚曼. 新型双过渡金属MXene热电输运性能第一性原理计算. 物理学报, 2024, 73(14): 146301. doi: 10.7498/aps.73.20240432
    [2] 赵俊, 姚璨, 曾晖. 新型正交相BN单层半导体有毒气体吸附性能及电输运性能的理论研究. 物理学报, 2024, 73(12): 126802. doi: 10.7498/aps.73.20231621
    [3] 莫秋燕, 张颂, 荆涛, 张泓筠, 李先绪, 吴家隐. CuSe表面修饰的第一性原理研究. 物理学报, 2023, 72(12): 127301. doi: 10.7498/aps.72.20230093
    [4] 肖忆瑶, 何佳豪, 陈南锟, 王超, 宋宁宁. 基于负载Fe3O4纳米微球的大尺寸单层二维Ti3C2Tx微波吸收性能. 物理学报, 2023, 72(21): 217501. doi: 10.7498/aps.72.20231200
    [5] 杜立杰, 陈靖雯, 王荣明. 基于C14H31O3P-Ti3C2/Au肖特基结的自驱动近红外探测器. 物理学报, 2023, 72(13): 138502. doi: 10.7498/aps.72.20230480
    [6] 韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究. 物理学报, 2022, 71(1): 010701. doi: 10.7498/aps.71.20211048
    [7] 徐强, 段康, 谢浩, 张秦蓉, 梁本权, 彭祯凯, 李卫. 基于第一性原理的二维材料黑磷砷气体传感器的机理研究. 物理学报, 2021, 70(15): 157101. doi: 10.7498/aps.70.20201952
    [8] 韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211048
    [9] 陈国祥, 樊晓波, 李思琦, 张建民. 碱金属和碱土金属掺杂二维GaN材料电磁特性的第一性原理计算. 物理学报, 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [10] 陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童祎, 肖建. 基于二维材料MXene的仿神经突触忆阻器的制备和长/短时程突触可塑性的实现. 物理学报, 2019, 68(9): 098501. doi: 10.7498/aps.68.20182306
    [11] 刘峰斌, 陈文彬, 崔岩, 屈敏, 曹雷刚, 杨越. 活性质吸附氢修饰金刚石表面的第一性原理研究. 物理学报, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [12] 蒋先伟, 鲁世斌, 代广珍, 汪家余, 金波, 陈军宁. 电荷俘获存储器数据保持特性第一性原理研究. 物理学报, 2015, 64(21): 213102. doi: 10.7498/aps.64.213102
    [13] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究. 物理学报, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [14] 杨彪, 王丽阁, 易勇, 王恩泽, 彭丽霞. C, N, O原子在金属V中扩散行为的第一性原理计算. 物理学报, 2015, 64(2): 026602. doi: 10.7498/aps.64.026602
    [15] 孙小亮, 陈长虹, 孟德佳, 冯士高, 于洪浩. 复合金属光栅模式分离与高性能气体传感器应用. 物理学报, 2015, 64(14): 147302. doi: 10.7498/aps.64.147302
    [16] 胡洁琼, 谢明, 张吉明, 刘满门, 杨有才, 陈永泰. Au-Sn金属间化合物的第一性原理研究. 物理学报, 2013, 62(24): 247102. doi: 10.7498/aps.62.247102
    [17] 刘源, 姚洁, 陈驰, 缪灵, 江建军. 氢修饰石墨烯纳米带压电性质的第一性原理研究. 物理学报, 2013, 62(6): 063601. doi: 10.7498/aps.62.063601
    [18] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [19] 赵宗彦, 柳清菊, 张 瑾, 朱忠其. 3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究. 物理学报, 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
    [20] 姚红英, 顾 晓, 季 敏, 张笛儿, 龚新高. SiO2-羟基表面上金属原子的第一性原理研究. 物理学报, 2006, 55(11): 6042-6046. doi: 10.7498/aps.55.6042
计量
  • 文章访问数:  2177
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-04
  • 修回日期:  2023-12-04
  • 上网日期:  2024-01-23
  • 刊出日期:  2024-04-05

/

返回文章
返回