搜索

x
中国物理学会期刊

利用质子能损诊断部分电离等离子体靶中的束缚电子密度

CSTR: 32037.14.aps.73.20231736

Diagnosis of bound electron density by measuring energy loss of proton beam in partially ionized plasma target

CSTR: 32037.14.aps.73.20231736
PDF
HTML
导出引用
  • 部分电离等离子体是惯性约束聚变燃料及天体等离子体中的重要组成部分, 该等离子体的输运及流体力学等性质受到束缚电子的显著影响, 然而当前基于光谱学的技术手段难以对其进行高精度诊断. 本文基于中国科学院近代物理研究所低能离子束与等离子体相互作用实验平台, 精确测量了100 keV质子束穿过部分电离氢等离子体靶后的能损, 该能损是质子同靶区内自由电子与束缚电子碰撞共同作用的结果. 利用已有的能损理论模型, 结合激光干涉诊断获得的自由电子密度信息, 最终得到了部分电离氢等离子体靶中沿离子路径上的束缚电子密度, 并给出了该等离子体的离化度参数. 该离子束诊断技术具有在线、原位、分辨率高等优势, 为解决部分电离等离子体内部束缚电子密度的诊断问题提供了新的途径.

     

    Partially ionized plasma contains the bound electrons, which have an effect on the instability of the plasma. The evolution process of bound electron density cannot be obtained by using the existing optical method used for diagnosing the free electron density. In this work, we carry out a high-precision experiment: the energy loss of a 100 keV proton beam penetrating through the partially ionized hydrogen plasma target is measured on the platform of ion beam-plasma interaction at the Institute of Modern Physics, Chinese Academy of Sciences. The bound electron density is obtained according to the energy loss model of Bethe theory. The free electron density is measured by laser interferometry and the electron tempercture is obtained from the measured spectrum (Te = 0.68 eV; nfe = 2.41×1017 cm–2). It is found that the bound electron density decreases during plasma lifetime. The diagnosis of bound electron density by measuring energy loss of ion beam has the advantages of on-line, in-situ and high resolution, thus providing a new way to solve the problem about measuring the bound electron density in partially ionized plasma. A COMSOL simulation reveals that the high-temperature free electrons will be ejected quickly out of the plasma area through a mechanical diaphragm, thus reducing the total number of free electrons. In order to maintain a relatively high degree of ionization in this plasma, in principle, more and more bound electrons are ionized into free electrons, the density of bound electrons decreases correspondingly. The simulation result accords well with our experimental data. Based on this finding, more detailed plasma target parameter is obtained, which is helpful in deepening the understanding of the interaction process between ion beam and plasma. In future, more researches of low low-energy highly-charged ions-plasma interaction will be conducted.

     

    目录

    /

    返回文章
    返回