-
利用无狭缝光栅摄谱仪记录的一次闪电首次回击后3个M分量的光谱资料, 分析了其光谱特征. 并结合等离子体理论, 首次计算了闪电M分量内部核心通道和周围电晕层通道的温度和电子密度. 研究了这两个物理量沿通道的变化特性, 并与相应回击放电进行了对比. 结果表明: 闪电M分量的光谱特征相比回击的光谱特征有明显差异, M分量通道的光辐射主要来自红外波段的光谱线. M分量放电过程中内部电流核心通道的温度可达40000 K, 电子密度数量级为1018 cm–3. 周围电晕层通道的温度为20000 K左右, 电子密度比核心通道的电子密度小一个数量级. M分量内部核心通道的温度随通道高度的增加而减小, 周围电晕层通道的温度随通道高度的增加而增大. 在内部核心通道, 电子密度随高度基本保持不变. 在周围电晕层通道, 通道顶端光强明显增大的两个M分量其电子密度随通道高度的增加而增大, 顶端光强增加较弱的一个M分量其电子密度随通道高度基本保持不变. 而相应的回击放电, 其内部电流核心通道和外围电晕层通道的温度均随通道高度的增加而增大, 电子密度均沿通道基本保持不变.Using the spectra of the three M-components following a first return stroke recorded by a slitless spectrograph, the spectral features of the M-components are analyzed. Combining with plasma theories, the temperatures and the electron densities of the M-components in the channel core and outer corona sheath are calculated. The variations along the channel of these two parameters are studied, and compared with the corresponding return stroke. The results show that the spectra of the M-components are different from the spectrum of the return stroke. The optical radiation of the M-component is primarily from the spectral lines in infrared waveband. The temperature of the M-component in the channel core can reach 40000 K. The electron density of the M-component in the channel core is on the order of 1018 cm–3. The temperature of the M-component in the external corona sheath is about 20000 K. The electron density of the M-component in the external corona sheath is on the order of 1017 cm–3. The temperature of the M-component in the channel core decreases with height increasing, while that in the external corona sheath increases with channel height increasing. The electron density of the M-component in the channel core basically does not change with channel height. Whereas, the electron densities in the external corona sheath for two M-components with hard light at the upper end of the channel increase with channel height increasing, and the electron density for one M-component with weak light at upper end of the channel basically does not change with the channel height. By comparison, the temperature in the core channel and in the external corona sheath of the corresponding return stroke both increase with channel height. The electron density in the core channel and in the external corona sheath of the corresponding return stroke both basically remain constant along the channel.
[1] Malan D J, Collens H 1937 J. Proc. R. Soc. Lond, A, Math. Phys. Sci. 162 175Google Scholar
[2] Fisher R J, Schnetzer G H 1993 J. Geophys. Res. 98 22887Google Scholar
[3] Thottappillil R, Goldberg J D, Rakov V A, Uman M A, Fisher R J, George H S 1995 J. Geophys. Res. 100 25711Google Scholar
[4] Jordan D M, Idone V P, Orville R E, Rakov V A, Uman M A 1995 J. Geophys. Res. 100 25695Google Scholar
[5] Rakov V A, Crawford D E, Rambo K J, Schnetzer G H, Uman M A 2001 J. Geophys. Res. 106 22817Google Scholar
[6] Qie X, Jiang R, Wang C, Yang J, Wang J, Liu D 2011 J. Geophys. Res. 116 D10102Google Scholar
[7] 肖桐, 张阳, 吕伟涛, 郑栋, 张义军 2013 应用气象学报 24 446Google Scholar
Xiao T, Zhang Y, Lu W T, Zheng D, Zhang Y J 2013 J. Appl. Meteorolog. Sci. 24 446Google Scholar
[8] 吕伟涛, 张义军, 周秀骥, 孟青, 郑栋, 马明, 王飞, 陈邵东, 郄秀书 2007 应用气象学报 65 983Google Scholar
Lu W T, Zhang Y J, Zhou X J, Meng Q, Zheng D, Ma M, Wang F, Chen S D, Qie X S 2007 J. Appl. Meteorolog. Sci. 65 983Google Scholar
[9] 孔祥贞, 郄秀书, 王才伟, 张义军, 王怀斌, 张翠华 2003 高原气象 22 259Google Scholar
Kong X Z, Qie X S, Wang C W, Zhang Y J, Wang H B, Zhang C H 2003 Plateau Meteorol. 22 259Google Scholar
[10] 蒋如斌, 郄秀书, 王彩霞, 杨静, 张其林, 刘明元, 王俊芳, 刘冬霞, 潘伦湘 2011 物理学报 60 079201Google Scholar
Jang R B, Qie X S, Wang C X, Yang J, Zhang Q L, Liu M Y, Wang J F, Liu D X, Pan L X 2011 Acta Phys. Sin. 60 079201Google Scholar
[11] 王雪娟, 袁萍, 岑建勇, 张廷龙, 薛思敏, 赵金翠, 许鹤 2013 物理学报 62 109201Google Scholar
Wang X J, Yuan P, Cen J Y, Zhang T L, Xue S M, Zhao J C, Xu H 2013 Acta Phys. Sin. 62 109201Google Scholar
[12] Uman M A, Orville R E 1965 J. Geophys. Res. 70 5491Google Scholar
[13] Uman M A 1969 J. Geophys. Res. 74 949Google Scholar
[14] 穆亚利, 袁萍, 王雪娟, 董彩霞 2016 光学学报 36 0630001Google Scholar
Mu Y L, Yuan P, Wang X J, Dong C X 2016 Acta Optica Sinica 36 0630001Google Scholar
[15] Xue S, Yuan P, Cen J, Li Y, Wang X 2015 Wang J. Geophys. Res. Atmos. 120 1972Google Scholar
[16] Wang X, Yuan P, Cen J, Xue S 2016 J. Geophys. Res. Atmos. 121 8615Google Scholar
[17] 郄秀书, 张其林, 袁铁, 张廷龙 2013 雷电物理 (北京: 科学出版社)
Qie X H, Zhang Q L, Yuan T, Zhang T L 2013 Thunder Physics (Beijing: Science Press) (in Chinese)
[18] Maslowski G, Rakov V A 2013 Atmos. Res. 129 117Google Scholar
[19] Maslowski G, Rakov V A 2006 J. Geophys. Res. 111 D14110Google Scholar
[20] Cvetic J, Heidler F, Markovic S, Radosavljevic R, Osmokrovic P 2012 Atmos. Res. 117 122Google Scholar
[21] Orville R E 1968 J. Geophys. Res. 73 6999Google Scholar
[22] Thottappillil R, Rakov V A, Uman M A 1997 J. Geophys. Res. 102 6987Google Scholar
[23] Wang X, Yuan P, Cen J, Liu G 2017 J. Geophys. Res. Atmos. 122 4993Google Scholar
[24] Liu G, Yuan P, An T, Cen J, Wang X 2019 Appl. Phys. Lett. 115 064103Google Scholar
[25] Liu G, Yuan P, An T, Sun D, Cen J, Wang X 2019 J. Geophys. Res. Atmos. 124 4689Google Scholar
[26] Zhao J, Yuan P, Cen J, Liu J, Wang J, Zhang G 2013 J. Appl. Phys. 114 163303Google Scholar
[27] 袁萍, 欧阳玉花, 吕世华, 郄秀书, 贾向东, 张华明 2006 高原气象 25 503Google Scholar
Yuan P, Ouyang Y H, Lu S H, Qie X S, Jia X D, Zhang H M 2006 Plateau Meteorol. 25 503Google Scholar
[28] 张华明, 袁萍, 吕世华, 欧阳玉花 2007 高原气象 26 264Google Scholar
Zhang H M, Yuan P, Lu S H, Ouyang Y H 2007 Plateau Meteorol. 26 264Google Scholar
[29] Orville R E, Henderson R 1984 J. Atmos. Sci. 41 3180Google Scholar
[30] Weidman C, Boye A, Crowell L 1989 J. Geophys. Res. 94 13249Google Scholar
[31] Hegazy H 2010 J. Appl. Phys. B 98 601Google Scholar
-
-
[1] Malan D J, Collens H 1937 J. Proc. R. Soc. Lond, A, Math. Phys. Sci. 162 175Google Scholar
[2] Fisher R J, Schnetzer G H 1993 J. Geophys. Res. 98 22887Google Scholar
[3] Thottappillil R, Goldberg J D, Rakov V A, Uman M A, Fisher R J, George H S 1995 J. Geophys. Res. 100 25711Google Scholar
[4] Jordan D M, Idone V P, Orville R E, Rakov V A, Uman M A 1995 J. Geophys. Res. 100 25695Google Scholar
[5] Rakov V A, Crawford D E, Rambo K J, Schnetzer G H, Uman M A 2001 J. Geophys. Res. 106 22817Google Scholar
[6] Qie X, Jiang R, Wang C, Yang J, Wang J, Liu D 2011 J. Geophys. Res. 116 D10102Google Scholar
[7] 肖桐, 张阳, 吕伟涛, 郑栋, 张义军 2013 应用气象学报 24 446Google Scholar
Xiao T, Zhang Y, Lu W T, Zheng D, Zhang Y J 2013 J. Appl. Meteorolog. Sci. 24 446Google Scholar
[8] 吕伟涛, 张义军, 周秀骥, 孟青, 郑栋, 马明, 王飞, 陈邵东, 郄秀书 2007 应用气象学报 65 983Google Scholar
Lu W T, Zhang Y J, Zhou X J, Meng Q, Zheng D, Ma M, Wang F, Chen S D, Qie X S 2007 J. Appl. Meteorolog. Sci. 65 983Google Scholar
[9] 孔祥贞, 郄秀书, 王才伟, 张义军, 王怀斌, 张翠华 2003 高原气象 22 259Google Scholar
Kong X Z, Qie X S, Wang C W, Zhang Y J, Wang H B, Zhang C H 2003 Plateau Meteorol. 22 259Google Scholar
[10] 蒋如斌, 郄秀书, 王彩霞, 杨静, 张其林, 刘明元, 王俊芳, 刘冬霞, 潘伦湘 2011 物理学报 60 079201Google Scholar
Jang R B, Qie X S, Wang C X, Yang J, Zhang Q L, Liu M Y, Wang J F, Liu D X, Pan L X 2011 Acta Phys. Sin. 60 079201Google Scholar
[11] 王雪娟, 袁萍, 岑建勇, 张廷龙, 薛思敏, 赵金翠, 许鹤 2013 物理学报 62 109201Google Scholar
Wang X J, Yuan P, Cen J Y, Zhang T L, Xue S M, Zhao J C, Xu H 2013 Acta Phys. Sin. 62 109201Google Scholar
[12] Uman M A, Orville R E 1965 J. Geophys. Res. 70 5491Google Scholar
[13] Uman M A 1969 J. Geophys. Res. 74 949Google Scholar
[14] 穆亚利, 袁萍, 王雪娟, 董彩霞 2016 光学学报 36 0630001Google Scholar
Mu Y L, Yuan P, Wang X J, Dong C X 2016 Acta Optica Sinica 36 0630001Google Scholar
[15] Xue S, Yuan P, Cen J, Li Y, Wang X 2015 Wang J. Geophys. Res. Atmos. 120 1972Google Scholar
[16] Wang X, Yuan P, Cen J, Xue S 2016 J. Geophys. Res. Atmos. 121 8615Google Scholar
[17] 郄秀书, 张其林, 袁铁, 张廷龙 2013 雷电物理 (北京: 科学出版社)
Qie X H, Zhang Q L, Yuan T, Zhang T L 2013 Thunder Physics (Beijing: Science Press) (in Chinese)
[18] Maslowski G, Rakov V A 2013 Atmos. Res. 129 117Google Scholar
[19] Maslowski G, Rakov V A 2006 J. Geophys. Res. 111 D14110Google Scholar
[20] Cvetic J, Heidler F, Markovic S, Radosavljevic R, Osmokrovic P 2012 Atmos. Res. 117 122Google Scholar
[21] Orville R E 1968 J. Geophys. Res. 73 6999Google Scholar
[22] Thottappillil R, Rakov V A, Uman M A 1997 J. Geophys. Res. 102 6987Google Scholar
[23] Wang X, Yuan P, Cen J, Liu G 2017 J. Geophys. Res. Atmos. 122 4993Google Scholar
[24] Liu G, Yuan P, An T, Cen J, Wang X 2019 Appl. Phys. Lett. 115 064103Google Scholar
[25] Liu G, Yuan P, An T, Sun D, Cen J, Wang X 2019 J. Geophys. Res. Atmos. 124 4689Google Scholar
[26] Zhao J, Yuan P, Cen J, Liu J, Wang J, Zhang G 2013 J. Appl. Phys. 114 163303Google Scholar
[27] 袁萍, 欧阳玉花, 吕世华, 郄秀书, 贾向东, 张华明 2006 高原气象 25 503Google Scholar
Yuan P, Ouyang Y H, Lu S H, Qie X S, Jia X D, Zhang H M 2006 Plateau Meteorol. 25 503Google Scholar
[28] 张华明, 袁萍, 吕世华, 欧阳玉花 2007 高原气象 26 264Google Scholar
Zhang H M, Yuan P, Lu S H, Ouyang Y H 2007 Plateau Meteorol. 26 264Google Scholar
[29] Orville R E, Henderson R 1984 J. Atmos. Sci. 41 3180Google Scholar
[30] Weidman C, Boye A, Crowell L 1989 J. Geophys. Res. 94 13249Google Scholar
[31] Hegazy H 2010 J. Appl. Phys. B 98 601Google Scholar
计量
- 文章访问数: 5680
- PDF下载量: 71
- 被引次数: 0