搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数字全息干涉术的云微物理参数同步测量方法

高攀 王骏 赵成成 唐家斌 刘晶晶 闫庆 华灯鑫

引用本文:
Citation:

基于数字全息干涉术的云微物理参数同步测量方法

高攀, 王骏, 赵成成, 唐家斌, 刘晶晶, 闫庆, 华灯鑫

Simultaneous measurement of cloud microphysical parameters based on digital holographic interferometry

Gao Pan, Wang Jun, Zhao Cheng-Cheng, Tang Jia-Bin, Liu Jing-Jing, Yan Qing, Hua Deng-Xin
PDF
HTML
导出引用
  • 云微物理参数对气候变化、天气预测、人工影响天气、飞行安全等领域具有重要的影响. 目前, 基于光散射、碰撞和成像理论的云微物理参数测量方法存在反演过程需要对云滴谱和粒子特性进行假设、撞击过程会破坏粒子特征、无法获得云粒子三维特征等瓶颈问题. 本文提出了基于干涉理论, 结合光信息处理、景深压缩与融合全息图的灰度梯度方差技术的同轴数字全息干涉术测量方法, 可为云滴谱、云粒子直径、数浓度精细同步探测提供z轴定位精度为0.01 mm、系统分辨率为2 μm的技术手段. 实验中, 以超声波雾化器产生的中值直径为3.9 μm的液滴粒子作为液相云粒子的模拟, 测量结果与实际相符. 该方法可为研究云中液态水含量, 及夹卷、凝结、碰撞和时空演化规律提供有效的支持, 对粒子的动力学研究具有借鉴意义, 并为我国陆基及机载测云应用提供了一套可行的系统解决方案.
    Investigation of cloud microphysical is of great significance in deepening the understanding of the radiation energy budget, water cycle process, and precipitation mechanism, and improving the scientificity and effectiveness of artificial precipitation. Especially under the action of turbulence, in addition to shear and inertia, the turbulence in the cloud will accelerate the collision of cloud droplets through vortex superposition. The above process will further complicate the cloud microphysical characters. At present, the methods of measuring cloud microphysical parameters based on light scattering, collision and imaging theories encounter bottlenecks: the inversion process needs to make the assumptions about cloud droplet spectrum and particle characteristics, the impact process will destroy particle characteristics, and the three-dimensional characteristics of cloud particles cannot be obtained. Because of its many advantages, such as fast, real-time, non-destructive, non-invasive, high-resolution, full-field optical measurement, etc., in-line digital holographic interferometry is considered as a new potential tool for the dynamical measurement of cloud microphysical property. In particular, the mutual interference between the particle image and twin image is small under far-field recording conditions. In this paper, the measurement method of the on-line digital holographic interferometry based on interference theory, combining optical information processing, depth of field compression, and gray gradient variance technology of fusion holograms, is investigated. This method, with a z-axis position accuracy of 0.01 mm and system resolution of 2 μm, is employed for simultaneously and finely detecting the cloud droplet spectrum, cloud particle diameter, and number concentration. In the experiment, the liquid droplet with a median diameter of 3.9 μm, produced by the ultrasonic atomizer, is used as an example of the cloud particle. The measurement results are consistent with realistic scenario. By using a high speed charge coupled device or complementary metal oxide semiconductor camera, this method can solve the technical bottleneck of three-dimensional fine characteristics of cloud particle in airborne measurement by using cloud droplet spectrometer. It can provide effective support for the research of liquid water in the cloud, entrainment, condensation, collision, and temporal and spatial evolution laws. In addition, it has reference significance for the study of particle dynamics. Simultaneously, this method provides a feasible solution for the measurement of cloud in land-based and airborne platforms.
      通信作者: 王骏, wangjun790102@xaut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 41875034, 41627807, 41975045)资助的课题
      Corresponding author: Wang Jun, wangjun790102@xaut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41875034, 41627807, 41975045)
    [1]

    Li J, Jian B, Huang J, Hu Y, Zhao C, Kawamoto K, Liao S, Wu M 2018 Remote. Sens. Environ. 213 144Google Scholar

    [2]

    Li J, Lv Q, Zhang M, Wang T, Kawamoto K, Chen S, Zhang B 2017 Atmos. Chem. Phys. 17 1847Google Scholar

    [3]

    Lu C, Liu Y, Seong S Y, Chen J, Zhu L, Gao S, Yin Y, Jia X, Wang Y 2020 J. Geophys Res. 125 031868Google Scholar

    [4]

    Gao S, Lu C, Liu Y, Mei F, Wang J, Zhu L, Yan S 2020 Geophys. Res. Lett. 47 086970Google Scholar

    [5]

    宋跃辉, 周煜东, 王玉峰, 李仕春, 高飞, 李博, 华灯鑫 2018 物理学报 67 249201Google Scholar

    Song Y H, Zhou Y D, Wang Y F, Li S C, Gao F, Li B, Hua D X 2018 Acta Phys. Sin. 67 249201Google Scholar

    [6]

    李书磊, 刘磊, 高太长, 胡帅, 黄威 2017 物理学报 66 054102Google Scholar

    Li S L, Liu L, Gao T C, Hu S, Huang W 2017 Acta Phys. Sin. 66 054102Google Scholar

    [7]

    黄敏松, 雷恒池 2018 物理学报 67 249202Google Scholar

    Huang M S, Lei H C 2018 Acta Phys. Sin. 67 249202Google Scholar

    [8]

    Jiang F, Zhang Y, Bu L, Chu C 2019 Appl. Opt. 58 9777Google Scholar

    [9]

    Stephens G L, Kummerow C D 2007 J. Atmos. Sci. 64 3742Google Scholar

    [10]

    黄亦鹏, 李万彪, 赵玉春, 白兰强 2019 地球科学进展 34 1273

    Huang Y P, Li W B, Zhao Y C, Bai L Q 2019 Advan. Earth Sci. 34 1273

    [11]

    Smith H R, Ulanowski Z, Kaye P H 2019 Atmos. Meas. Tech. 12 6579Google Scholar

    [12]

    Fujiwara M, Sugidachi T, Arai T 2016 Atmos. Meas. Tech. 9 5911Google Scholar

    [13]

    Kuhn T, Heymsfield A J 2016 Pure Appl. Geophys. 173 3065Google Scholar

    [14]

    Miloshevich L M, Heymsfield A J 1997 J. Atmos. Ocean. Tech. 14 753

    [15]

    Waugh S M, Ziegler C L, MacGorman D R 2015 J. Atmos. Ocean. Tech. 32 1562Google Scholar

    [16]

    Suzuki K, Shimizu K, Ohigashi T 2012 Sola 8 1Google Scholar

    [17]

    李大山 2002 人工影响天气现状与展望 (北京: 气象出版社) 第441页

    Li D S 2002 Current Situation and Prospect of Weather Modification (Beijing: China Meteorological Press) p441 (in Chinese)

    [18]

    Di J, Li Y, Xie M, Zhang J, Ma C, Xi T, Li E, Zhao J 2016 Appl. Opt. 55 7287Google Scholar

    [19]

    吴羽峰, 吴佳琛, 郝然, 金尚忠, 曹良才 2020 应用光学 41 662Google Scholar

    Wu Y F, Wu J C, Hao R, Jin S Z, Cao L C 2020 J. Appl. Opt. 41 662Google Scholar

    [20]

    张益溢, 吴佳琛, 郝然, 金尚忠, 曹良才 2020 物理学报 69 164201Google Scholar

    Zhang Y Y, Wu J C, Hao R, Jin S L, Cao L C 2020 Acta Phys. Sin. 69 164201Google Scholar

    [21]

    Xi T, Di J, Li Y, Dai S, Ma C, Zhao J 2018 Opt. Express 26 28497Google Scholar

    [22]

    Beals M J, Fugal J P, Sh aw, R A, L u, J, Spuler S M, Stith J L 2015 Science 350 87Google Scholar

    [23]

    Peter A, Olaf S, Martin S, Evelyn H, Stefan B, Ottmar M, Ulrike L 2009 Appl. Opt. 48 5811Google Scholar

    [24]

    Fugal J P, Shaw R A 2009 Atmos. Meas. Tech. 2 259Google Scholar

    [25]

    Yao L, Chen J, Sojka P E, Wu X C, Cen K 2018 Opt. Lett. 43 1283Google Scholar

  • 图 1  同步测量云微物理参数的同轴DHI实验光路

    Fig. 1.  Experimental setup for simultaneous measurement of cloud microphysical parameters.

    图 2  USAF1951标准分辨率板的再现全息图 (a) 采样距离为20 mm; (b) 采样距离为35 mm

    Fig. 2.  Reconstructing hologram of USAF1951 standard resolution plate at (a) 20 mm and (b) 35 mm.

    图 3  单粒子的时序数字全息图

    Fig. 3.  Digital holograms of single particle at different times

    图 4  融合全息图的灰度梯度方差分布

    Fig. 4.  Gray gradient variance distribution of fusion hologram

    图 5  xy平面内位置坐标与粒子尺寸确定

    Fig. 5.  Position coordinates and particle size in xy plane.

    图 6  单粒子的三维运动轨迹

    Fig. 6.  Three-dimensional motion trail of a single particle.

    图 7  中值直径3.9 μm的液滴粒子测量结果 (a) 粒子分布; (b) 粒子谱; (c) z轴60—100 mm数浓度; (d) z轴0—60 mm粒子谱

    Fig. 7.  Measurement results of droplet particles with the median diameter of 3.9 μm: (a) Particles distribution; (b) particles spectrum; (c) number concentration from 60 mm to 100 mm at z axis; (d) number concentration from 0 mm to 60 mm at z axis

  • [1]

    Li J, Jian B, Huang J, Hu Y, Zhao C, Kawamoto K, Liao S, Wu M 2018 Remote. Sens. Environ. 213 144Google Scholar

    [2]

    Li J, Lv Q, Zhang M, Wang T, Kawamoto K, Chen S, Zhang B 2017 Atmos. Chem. Phys. 17 1847Google Scholar

    [3]

    Lu C, Liu Y, Seong S Y, Chen J, Zhu L, Gao S, Yin Y, Jia X, Wang Y 2020 J. Geophys Res. 125 031868Google Scholar

    [4]

    Gao S, Lu C, Liu Y, Mei F, Wang J, Zhu L, Yan S 2020 Geophys. Res. Lett. 47 086970Google Scholar

    [5]

    宋跃辉, 周煜东, 王玉峰, 李仕春, 高飞, 李博, 华灯鑫 2018 物理学报 67 249201Google Scholar

    Song Y H, Zhou Y D, Wang Y F, Li S C, Gao F, Li B, Hua D X 2018 Acta Phys. Sin. 67 249201Google Scholar

    [6]

    李书磊, 刘磊, 高太长, 胡帅, 黄威 2017 物理学报 66 054102Google Scholar

    Li S L, Liu L, Gao T C, Hu S, Huang W 2017 Acta Phys. Sin. 66 054102Google Scholar

    [7]

    黄敏松, 雷恒池 2018 物理学报 67 249202Google Scholar

    Huang M S, Lei H C 2018 Acta Phys. Sin. 67 249202Google Scholar

    [8]

    Jiang F, Zhang Y, Bu L, Chu C 2019 Appl. Opt. 58 9777Google Scholar

    [9]

    Stephens G L, Kummerow C D 2007 J. Atmos. Sci. 64 3742Google Scholar

    [10]

    黄亦鹏, 李万彪, 赵玉春, 白兰强 2019 地球科学进展 34 1273

    Huang Y P, Li W B, Zhao Y C, Bai L Q 2019 Advan. Earth Sci. 34 1273

    [11]

    Smith H R, Ulanowski Z, Kaye P H 2019 Atmos. Meas. Tech. 12 6579Google Scholar

    [12]

    Fujiwara M, Sugidachi T, Arai T 2016 Atmos. Meas. Tech. 9 5911Google Scholar

    [13]

    Kuhn T, Heymsfield A J 2016 Pure Appl. Geophys. 173 3065Google Scholar

    [14]

    Miloshevich L M, Heymsfield A J 1997 J. Atmos. Ocean. Tech. 14 753

    [15]

    Waugh S M, Ziegler C L, MacGorman D R 2015 J. Atmos. Ocean. Tech. 32 1562Google Scholar

    [16]

    Suzuki K, Shimizu K, Ohigashi T 2012 Sola 8 1Google Scholar

    [17]

    李大山 2002 人工影响天气现状与展望 (北京: 气象出版社) 第441页

    Li D S 2002 Current Situation and Prospect of Weather Modification (Beijing: China Meteorological Press) p441 (in Chinese)

    [18]

    Di J, Li Y, Xie M, Zhang J, Ma C, Xi T, Li E, Zhao J 2016 Appl. Opt. 55 7287Google Scholar

    [19]

    吴羽峰, 吴佳琛, 郝然, 金尚忠, 曹良才 2020 应用光学 41 662Google Scholar

    Wu Y F, Wu J C, Hao R, Jin S Z, Cao L C 2020 J. Appl. Opt. 41 662Google Scholar

    [20]

    张益溢, 吴佳琛, 郝然, 金尚忠, 曹良才 2020 物理学报 69 164201Google Scholar

    Zhang Y Y, Wu J C, Hao R, Jin S L, Cao L C 2020 Acta Phys. Sin. 69 164201Google Scholar

    [21]

    Xi T, Di J, Li Y, Dai S, Ma C, Zhao J 2018 Opt. Express 26 28497Google Scholar

    [22]

    Beals M J, Fugal J P, Sh aw, R A, L u, J, Spuler S M, Stith J L 2015 Science 350 87Google Scholar

    [23]

    Peter A, Olaf S, Martin S, Evelyn H, Stefan B, Ottmar M, Ulrike L 2009 Appl. Opt. 48 5811Google Scholar

    [24]

    Fugal J P, Shaw R A 2009 Atmos. Meas. Tech. 2 259Google Scholar

    [25]

    Yao L, Chen J, Sojka P E, Wu X C, Cen K 2018 Opt. Lett. 43 1283Google Scholar

  • [1] 春江, 王瑾萱, 徐晨, 温荣福, 兰忠, 马学虎. 液滴撞击超亲水表面的最大铺展直径预测模型. 物理学报, 2021, 70(10): 106801. doi: 10.7498/aps.70.20201918
    [2] 彭国良, 张俊杰. 基于流体-磁流体-粒子混合方法的高空核爆炸碎片云模拟. 物理学报, 2021, 70(18): 180703. doi: 10.7498/aps.70.20210347
    [3] 宋跃辉, 周煜东, 王玉峰, 李仕春, 高飞, 李博, 华灯鑫. 水云增长过程中的云滴谱及散射特性分析. 物理学报, 2018, 67(24): 249201. doi: 10.7498/aps.67.20181544
    [4] 黄敏松, 雷恒池. 部分状粒子处理方法及其对云微物理参数测量的影响. 物理学报, 2018, 67(24): 249202. doi: 10.7498/aps.67.20181412
    [5] 王宇翔, 陈硕. 微粗糙结构表面液滴浸润特性的多体耗散粒子动力学研究. 物理学报, 2015, 64(5): 054701. doi: 10.7498/aps.64.054701
    [6] 马理强, 苏铁熊, 刘汉涛, 孟青. 微液滴振荡过程的光滑粒子动力学方法数值模拟. 物理学报, 2015, 64(13): 134702. doi: 10.7498/aps.64.134702
    [7] 刘西川, 高太长, 刘磊, 翟东力. 基于粒子成像测速技术的降雪微物理特性研究. 物理学报, 2014, 63(19): 199201. doi: 10.7498/aps.63.199201
    [8] 刘西川, 高太长, 刘磊, 翟东力. 基于粒子成像测速技术的雨滴微物理特性研究. 物理学报, 2014, 63(2): 029203. doi: 10.7498/aps.63.029203
    [9] 袁飞, 袁操今, 聂守平, 朱竹青, 马青玉, 李莹, 朱文艳, 冯少彤. 双Lloyd镜数字全息显微测量术. 物理学报, 2014, 63(10): 104207. doi: 10.7498/aps.63.104207
    [10] 王林, 袁操今, 聂守平, 李重光, 张慧力, 赵应春, 张秀英, 冯少彤. 数字全息术测定涡旋光束拓扑电荷数. 物理学报, 2014, 63(24): 244202. doi: 10.7498/aps.63.244202
    [11] 韩丁, 严卫, 蔡丹, 杨汉乐. 基于最优估计理论、联合星载主被动传感器资料的液态云微物理特性反演研究. 物理学报, 2013, 62(14): 149201. doi: 10.7498/aps.62.149201
    [12] 蒋涛, 陆林广, 陆伟刚. 等直径微液滴碰撞过程的改进光滑粒子动力学模拟. 物理学报, 2013, 62(22): 224701. doi: 10.7498/aps.62.224701
    [13] 崔华坤, 王大勇, 王云新, 刘长庚, 赵洁, 李艳. 无透镜傅里叶变换数字全息术中非共面误差的自动补偿算法. 物理学报, 2011, 60(4): 044201. doi: 10.7498/aps.60.044201
    [14] 龙智勇, 石汉青, 黄思训. 利用卫星云图反演云导风的新思路. 物理学报, 2011, 60(5): 059202. doi: 10.7498/aps.60.059202
    [15] 常建忠, 刘谋斌, 刘汉涛. 微液滴动力学特性的耗散粒子动力学模拟. 物理学报, 2008, 57(7): 3954-3961. doi: 10.7498/aps.57.3954
    [16] 王殿海, 景 超, 姚荣涵. 居民出行分布中的电子云现象. 物理学报, 2007, 56(7): 3642-3648. doi: 10.7498/aps.56.3642
    [17] 徐志君, 李鹏华. 玻色凝聚原子云的二次干涉及其放大效应. 物理学报, 2007, 56(10): 5607-5612. doi: 10.7498/aps.56.5607
    [18] 王晓雷, 翟宏琛, 王 毅, 母国光. 超短脉冲数字全息术中的立体角分复用技术. 物理学报, 2006, 55(3): 1137-1142. doi: 10.7498/aps.55.1137
    [19] 曲伟娟, 刘德安, 职亚楠, 栾 竹, 刘立人. 利用数字全息干涉术观察RuO2:LiNbO3晶体中畴反转的区域特性. 物理学报, 2006, 55(8): 4276-4281. doi: 10.7498/aps.55.4276
    [20] 郭海明, 刘虹雯, 王业亮, 谢惠民, 戴福隆, 高鸿钧. 扫描探针显微学中的云纹方法. 物理学报, 2003, 52(10): 2514-2519. doi: 10.7498/aps.52.2514
计量
  • 文章访问数:  5949
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-26
  • 修回日期:  2020-12-18
  • 上网日期:  2021-04-20
  • 刊出日期:  2021-05-05

/

返回文章
返回