搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维材料WTe2用于气体传感器的性能研究

艾雯 胡小会 潘林 陈长春 王一峰 沈晓冬

引用本文:
Citation:

二维材料WTe2用于气体传感器的性能研究

艾雯, 胡小会, 潘林, 陈长春, 王一峰, 沈晓冬

Sensing performance of two-dimensional WTe2-based gas sensors

Ai Wen, Hu Xiao-Hui, Pan Lin, Chen Chang-Chun, Wang Yi-Feng, Shen Xiao-Dong
PDF
HTML
导出引用
  • 二维过渡金属硫族化合物由于具有大的比表面积、高的载流子迁移率以及快速响应等特性, 在高性能气体传感器应用方面具有显著优势. 本文通过密度泛函理论计算, 研究了CO, CO2, NH3, NO, NO2气体分子在单层WTe2表面的吸附构型、吸附能、电荷转移、电学及磁学特性. 结果表明, N基气体分子的吸附能小于C基气体分子的吸附能, 说明WTe2对N基气体分子的吸附更敏感. 电荷分析结果表明, NH3气体分子吸附在WTe2表面时表现为给电子体, 而其他四种气体分子都表现为得电子体. 能带结构方面, 与CO, CO2, NH3气体分子相比, 磁性气体分子NO和NO2的吸附在费米能级附近引入了杂质能带, 杂质能带主要来源于O原子和N原子的p轨道. 此外, NO和NO2气体分子分别诱导了0.99 μB和0.80 μB的磁矩. 本文的研究结果为实验上制备基于WTe2的超灵敏气体传感器提供理论指导.
    Since the discovery of graphene, graphene-based gas sensors have been widely studied, but the inherent zero band gap of graphene limits the response sensitivity of gas sensors. Transition metal dichalcogenides (TMDs) are ideal materials for designing nanoscaled highly-sensitive gas sensors due to their moderate band gaps, large surface-to-volume ratios and high carrier mobilities. Tungsten ditelluride (WTe2), as an important member of TMDs family, has outstanding advantages such as high specific surface area, excellent selectivity, and fast response. The WTe2 has quite a high carrier mobility and thus can provide a great response speed for gas sensor compared with graphene, which motivates us to further explore WTe2 as a promising sensing material. Recent studies have reported that monolayered and multilayered WTe2 films have been successfully synthesized, and the precise control of the number of atomic layers of monolayered WTe2 has been achieved. In this work, by density functional theory calculation, we examine the most stable adsorption configuration, adsorption energy, charge transfer, electrical and magnetic properties for each of the gas molecules (CO, CO2, NH3, NO and NO2) adsorbed on WTe2 monolayer. The results show that all the adsorptions of these gas molecules are physical adsorptions, and the adsorption energy of nitrogen-based gas is smaller than that of carbon-based gas, indicating that WTe2 is more sensitive to the adsorption of N-based gas molecules. The adsorption of NH3 behaves as a charge donor with electron obtained from WTe2 monolayer. The adsorption of CO, CO2, NO, and NO2 are charge acceptors, which accept charges from the WTe2 monolayer. Moreover, compared with the adsorption of CO, CO2 and NH3 gas molecules, the adsorption of NO and NO2 gas molecules introduce impurity states near the Fermi level, which are mainly contributed by the N p orbital and O p orbital. In addition, the adsorption of NO and NO2 induce magnetic moments of 0.99 μB and 0.80 μB, respectively. The results obtained in this work not only conduce to further understanding the charge transfer mechanism of gas molecules adsorbed on WTe2 monolayer, but also indicate the promising prospects of developing WTe2-based ultra-sensitivity gas sensing nanodevices.
      通信作者: 胡小会, xiaohui.hu@njtech.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11604047, 51672127)、江苏省自然科学基金(批准号: BK20160694)和江苏高校优势学科建设工程(PAPD)资助的课题.
      Corresponding author: Hu Xiao-Hui, xiaohui.hu@njtech.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604047, 51672127), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20160694), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China
    [1]

    Kong J, Franklin NR, Zhou C 2000 Science 287 622Google Scholar

    [2]

    Abbas A N, Liu B, Chen L, Ma Y, Cong S, Aroonyadet N, Köpf M, Nilges T, Zhou C 2015 ACS Nano 9 5618Google Scholar

    [3]

    Yang A, Wang D, Wang X, Zhang D, Koratkar N, Rong M 2018 Nano Today 20 13Google Scholar

    [4]

    Liu X, Ma T, Pinna N, Zhang J 2017 Adv. Funct. Mater. 27 1702168Google Scholar

    [5]

    Ko K Y, Park K, Lee S, Kim Y, Woo W J, Kim D, Song J G, Park J, Kim H 2018 Acs Appl. Mater. Interfaces 10 23910Google Scholar

    [6]

    Ko K Y, Song J G, Kim Y, Choi T, Shin S, Lee C W, Lee K, Koo J, Lee H, Kim J, Lee T, Park J, Kim H 2016 ACS Nano 10 9287Google Scholar

    [7]

    Ma Y, Kou L, Li X, Dai Y, Heine T 2016 Phys. Rev. B 93 035442Google Scholar

    [8]

    Hu Z, Wu Z, Han C, He J, Ni Z, Chen W 2018 Chem. Soc. Rev. 47 3100Google Scholar

    [9]

    Zhao Y, Qiao J, Yu Z, Yu P, Xu K, Lau S P, Zhou W, Wang X, Ji W, Chai Y 2017 Adv. Mater. 29 1604230Google Scholar

    [10]

    Bandurin D A, Tyurnina A V, Geliang L Y, Mishchenko A, Zólyomi V, Morozov S V, et al. 2017 Nat. Nanotechnol. 12 223Google Scholar

    [11]

    Zhang S, Guo S, Chen Z, Wang Y, Gao H, Gomez-Herrero J, Ares P, Zamora F, Zhu Z, Zeng H 2018 Chem. Soc. Rev. 47 982Google Scholar

    [12]

    Zhang S, Xie M, Li F, Yan Z, Li Y, Kan E, Liu W, Chen Z, Zeng H 2016 Angew. Chem. Int. Ed. 55 1666Google Scholar

    [13]

    Perkins F K, Friedman A L, Cobas E, Campbell P M, Jernigan G G, Jonker B T 2013 Nano Lett. 13 668Google Scholar

    [14]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [15]

    Yuan W, Shi G 2013 J. Mater. Chem. A 1 10078Google Scholar

    [16]

    Mousavi H 2011 Commun. Theor. Phys. 56 373Google Scholar

    [17]

    Tang X, Du A, Kou L 2018 Wiley Interdiscip. Rev.: Comput. Mol. Sci. 8 e1361Google Scholar

    [18]

    Kuc A, Heine T, Kis A 2015 MRS Bull. 40 577Google Scholar

    [19]

    Zhou L, Kou L, Sun Y, Felser C, Hu F, Shan G, Smith S C, Yan B, Frauenheim T 2015 Nano Lett. 15 7867Google Scholar

    [20]

    Kou L, Du A, Chen C, Frauenheim T 2014 Nanoscale 6 5156Google Scholar

    [21]

    Huang Y, Guo J, Kang Y, Ai Y, Li C M 2015 Nanoscale 7 19358Google Scholar

    [22]

    Xie T, Xie G, Su Y, Hongfei D, Ye Z, Jiang Y 2016 Nanotechnol. 27 065502Google Scholar

    [23]

    Rao C N, Gopalakrishnan K, Maitra U 2015 ACS Appl. Mater. Interfaces 7 7809Google Scholar

    [24]

    Liu P F, Zhou L, Frauenheimc T, Wu L M 2016 Nanoscale 8 4915Google Scholar

    [25]

    Late D J, Huang Y K, Liu B, Acharya J, Shirodkar S N, Luo J, Yan A, Charles D, Waghmare U V, Dravid V P 2013 ACS Nano 7 4879Google Scholar

    [26]

    Lee K, Gatensby R, McEvoy N, Hallam T, Duesberg G S 2013 Adv. Mater. 25 6699Google Scholar

    [27]

    Yao Y, Tolentino L, Yang Z, Song X, Zhang W, Chen Y, Wong C P 2013 Adv. Funct. Mater. 23 3577Google Scholar

    [28]

    Giri A, Yang H, Jang W, Kwak J, Thiyagarajan K, Pal M, Lee D, Singh R, Kim C, Cho K 2018 Chem. Mater. 30 2463Google Scholar

    [29]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [30]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [31]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [32]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [33]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [34]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [35]

    Bučko T, Hafner J, Lebègue S, Ángyán J G 2010 J. Phys. Chem. A 114 11814Google Scholar

    [36]

    Yue Q, Shao Z, Chang S, Li J 2013 Nanoscale Res. Lett. 8 425Google Scholar

    [37]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

    [38]

    Ding Y, Wang Y, Ni J, Shi L, Shi S, Tang W 2011 Physica B 406 2254Google Scholar

    [39]

    Kang J, Tongay S, Zhou J, Li J, Wu J 2013 Appl. Phys. Lett. 102 012111Google Scholar

    [40]

    Hu X, Kou L, Sun L 2016 Sci. Rep. 6 31122Google Scholar

    [41]

    Hu X, Wang Y, Shen X, Krasheninnikov A V, Sun L, Chen Z 2018 2D Mater. 5 031012Google Scholar

    [42]

    Leenaerts O, Partoens B, Peeters F M 2008 Phys. Rev. B 77 125416Google Scholar

  • 图 1  (a) 四个不同的吸附位点示意图; (b) CO, (c) CO2, (d) NH3, (e) NO和(f) NO2吸附在单层WTe2表面最稳定构型的俯视图和侧视图; 吸附距离d的定义如 (b) 所示

    Fig. 1.  (a) Schematic diagram of four different adsorption sites; the top view and side view of the most favorable configurations of monolayer WTe2 with (b) CO, (c) CO2, (d) NH3, (e) NO, and (f) NO2 adsorption; the definition of adsorption distance d is shown in (b).

    图 2  CO, CO2, NH3, NO, NO2气体分子与单层WTe2之间的吸附距离和吸附能

    Fig. 2.  Adsorption distance and adsorption energy for CO, CO2, NH3, NO, and NO2 on WTe2 monolayer.

    图 3  (a) CO, (b) CO2, (c) NH3, (d) NO和 (e) NO2气体分子与单层WTe2之间的差分电荷密度. 等值面取6.0 × 10–4 e3, 电子积累(损耗)分别用黄色(蓝色)表示, 同时标注了电荷转移的方向(用箭头表示)和电荷转移量

    Fig. 3.  The charge difference between WTe2 monolayer and gas molecules for (a) CO, (b) CO2, (c) NH3, (d) NO and (e) NO2. The isosurface is taken as 6.0 × 10–4 e3. The electron accumulation (depletion) is indicated by yellow (blue) color. The direction (indicated by an arrow) and value of the charge transfer are shown.

    图 4  (a) 本征WTe2的能带结构图; (b) CO, (c) CO2和 (d) NH3吸附在单层WTe2表面的能带结构图; (e), (f) NO和 (g), (h) NO2吸附在单层WTe2表面的能带结构图. 其中蓝线和红线分别表示自旋向上和自旋向下的能带结构, 橄榄色的点线表示吸附气体分子的投影能带结构

    Fig. 4.  (a) The band structure of pristine WTe2; band structure of (b) CO, (c) CO2 and (d) NH3 adsorbed on WTe2 monolayer; band structure of (e), (f) NO and (g), (h) NO2 adsorbed on WTe2 monolayer, the blue and red lines represent the band structure of spin-up and spin-down, respectively. The olive dots represent the projected band structure of the adsorbed gas molecules.

    图 5  (a) CO, (b) CO2, (c) NH3, (d) NO和 (e) NO2分别吸附在单层WTe2上的分态密度图; (f) NO和 (g) NO2吸附在WTe2表面的自旋密度分布图

    Fig. 5.  The density state of (a) CO, (b) CO2, (c) NH3, (d) NO and (e) NO2 adsorbed on WTe2 monolayer, respectively. The spin density distribution of (f) NO and (g) NO2 adsorbed on WTe2 monolayer

  • [1]

    Kong J, Franklin NR, Zhou C 2000 Science 287 622Google Scholar

    [2]

    Abbas A N, Liu B, Chen L, Ma Y, Cong S, Aroonyadet N, Köpf M, Nilges T, Zhou C 2015 ACS Nano 9 5618Google Scholar

    [3]

    Yang A, Wang D, Wang X, Zhang D, Koratkar N, Rong M 2018 Nano Today 20 13Google Scholar

    [4]

    Liu X, Ma T, Pinna N, Zhang J 2017 Adv. Funct. Mater. 27 1702168Google Scholar

    [5]

    Ko K Y, Park K, Lee S, Kim Y, Woo W J, Kim D, Song J G, Park J, Kim H 2018 Acs Appl. Mater. Interfaces 10 23910Google Scholar

    [6]

    Ko K Y, Song J G, Kim Y, Choi T, Shin S, Lee C W, Lee K, Koo J, Lee H, Kim J, Lee T, Park J, Kim H 2016 ACS Nano 10 9287Google Scholar

    [7]

    Ma Y, Kou L, Li X, Dai Y, Heine T 2016 Phys. Rev. B 93 035442Google Scholar

    [8]

    Hu Z, Wu Z, Han C, He J, Ni Z, Chen W 2018 Chem. Soc. Rev. 47 3100Google Scholar

    [9]

    Zhao Y, Qiao J, Yu Z, Yu P, Xu K, Lau S P, Zhou W, Wang X, Ji W, Chai Y 2017 Adv. Mater. 29 1604230Google Scholar

    [10]

    Bandurin D A, Tyurnina A V, Geliang L Y, Mishchenko A, Zólyomi V, Morozov S V, et al. 2017 Nat. Nanotechnol. 12 223Google Scholar

    [11]

    Zhang S, Guo S, Chen Z, Wang Y, Gao H, Gomez-Herrero J, Ares P, Zamora F, Zhu Z, Zeng H 2018 Chem. Soc. Rev. 47 982Google Scholar

    [12]

    Zhang S, Xie M, Li F, Yan Z, Li Y, Kan E, Liu W, Chen Z, Zeng H 2016 Angew. Chem. Int. Ed. 55 1666Google Scholar

    [13]

    Perkins F K, Friedman A L, Cobas E, Campbell P M, Jernigan G G, Jonker B T 2013 Nano Lett. 13 668Google Scholar

    [14]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [15]

    Yuan W, Shi G 2013 J. Mater. Chem. A 1 10078Google Scholar

    [16]

    Mousavi H 2011 Commun. Theor. Phys. 56 373Google Scholar

    [17]

    Tang X, Du A, Kou L 2018 Wiley Interdiscip. Rev.: Comput. Mol. Sci. 8 e1361Google Scholar

    [18]

    Kuc A, Heine T, Kis A 2015 MRS Bull. 40 577Google Scholar

    [19]

    Zhou L, Kou L, Sun Y, Felser C, Hu F, Shan G, Smith S C, Yan B, Frauenheim T 2015 Nano Lett. 15 7867Google Scholar

    [20]

    Kou L, Du A, Chen C, Frauenheim T 2014 Nanoscale 6 5156Google Scholar

    [21]

    Huang Y, Guo J, Kang Y, Ai Y, Li C M 2015 Nanoscale 7 19358Google Scholar

    [22]

    Xie T, Xie G, Su Y, Hongfei D, Ye Z, Jiang Y 2016 Nanotechnol. 27 065502Google Scholar

    [23]

    Rao C N, Gopalakrishnan K, Maitra U 2015 ACS Appl. Mater. Interfaces 7 7809Google Scholar

    [24]

    Liu P F, Zhou L, Frauenheimc T, Wu L M 2016 Nanoscale 8 4915Google Scholar

    [25]

    Late D J, Huang Y K, Liu B, Acharya J, Shirodkar S N, Luo J, Yan A, Charles D, Waghmare U V, Dravid V P 2013 ACS Nano 7 4879Google Scholar

    [26]

    Lee K, Gatensby R, McEvoy N, Hallam T, Duesberg G S 2013 Adv. Mater. 25 6699Google Scholar

    [27]

    Yao Y, Tolentino L, Yang Z, Song X, Zhang W, Chen Y, Wong C P 2013 Adv. Funct. Mater. 23 3577Google Scholar

    [28]

    Giri A, Yang H, Jang W, Kwak J, Thiyagarajan K, Pal M, Lee D, Singh R, Kim C, Cho K 2018 Chem. Mater. 30 2463Google Scholar

    [29]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [30]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [31]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [32]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [33]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [34]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [35]

    Bučko T, Hafner J, Lebègue S, Ángyán J G 2010 J. Phys. Chem. A 114 11814Google Scholar

    [36]

    Yue Q, Shao Z, Chang S, Li J 2013 Nanoscale Res. Lett. 8 425Google Scholar

    [37]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

    [38]

    Ding Y, Wang Y, Ni J, Shi L, Shi S, Tang W 2011 Physica B 406 2254Google Scholar

    [39]

    Kang J, Tongay S, Zhou J, Li J, Wu J 2013 Appl. Phys. Lett. 102 012111Google Scholar

    [40]

    Hu X, Kou L, Sun L 2016 Sci. Rep. 6 31122Google Scholar

    [41]

    Hu X, Wang Y, Shen X, Krasheninnikov A V, Sun L, Chen Z 2018 2D Mater. 5 031012Google Scholar

    [42]

    Leenaerts O, Partoens B, Peeters F M 2008 Phys. Rev. B 77 125416Google Scholar

  • [1] 葛一璇, 于婷婷, 梁文杰. 原位合成方法制备超灵敏和高特异性的微型氢气传感器. 物理学报, 2024, 73(2): 020701. doi: 10.7498/aps.73.20231265
    [2] 赵俊, 姚璨, 曾晖. 新型正交相BN单层半导体有毒气体吸附性能及电输运性能的理论研究. 物理学报, 2024, 73(12): 126802. doi: 10.7498/aps.73.20231621
    [3] 吴宇阳, 李卫, 任青颖, 李金泽, 许巍, 许杰. 金属Sc修饰Ti2CO2吸附气体分子的第一性原理研究. 物理学报, 2024, 73(7): 073101. doi: 10.7498/aps.73.20231432
    [4] 董逸蒙, 孙永娇, 侯煜晨, 王炳亮, 陆志远, 张文栋, 胡杰. SnO2/ZnS异质结气体传感器的制备及其室温NO2敏感特性. 物理学报, 2023, 72(16): 160701. doi: 10.7498/aps.72.20230735
    [5] 张如轩, 宗肖航, 于婷婷, 葛一璇, 胡适, 梁文杰. 基于纳米传感器矩阵的混合气体组分探测与识别. 物理学报, 2022, 71(18): 180702. doi: 10.7498/aps.71.20220955
    [6] 徐强, 段康, 谢浩, 张秦蓉, 梁本权, 彭祯凯, 李卫. 基于第一性原理的二维材料黑磷砷气体传感器的机理研究. 物理学报, 2021, 70(15): 157101. doi: 10.7498/aps.70.20201952
    [7] 舒衍涛, 张有为, 王顺. 基于过渡金属硫族化合物同质结的光电探测器. 物理学报, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [8] 栾晓玮, 孙建平, 王凡嵩, 韦慧兰, 胡艺凡. 锑烯吸附金属Li原子的密度泛函研究. 物理学报, 2019, 68(2): 026802. doi: 10.7498/aps.68.20181648
    [9] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [10] 周愈之. 过渡金属硫族化合物柔性基底体系的模型与应用. 物理学报, 2018, 67(21): 218102. doi: 10.7498/aps.67.20181571
    [11] 苗银萍, 靳伟, 杨帆, 林粤川, 谭艳珍, 何海律. 光纤光热干涉气体检测技术研究进展. 物理学报, 2017, 66(7): 074212. doi: 10.7498/aps.66.074212
    [12] 李卫胜, 周健, 王瀚宸, 汪树贤, 于志浩, 黎松林, 施毅, 王欣然. 二维半导体过渡金属硫化物的逻辑集成器件. 物理学报, 2017, 66(21): 218503. doi: 10.7498/aps.66.218503
    [13] 张来斌, 任廷琦. 新型鸟嘌呤类似物y-鸟嘌呤及其异构体电子光谱性质的理论研究. 物理学报, 2015, 64(7): 077101. doi: 10.7498/aps.64.077101
    [14] 杨振清, 白晓慧, 邵长金. (TiO2)12量子环及过渡金属化合物掺杂对其电子性质影响的密度泛函理论研究. 物理学报, 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [15] 孙小亮, 陈长虹, 孟德佳, 冯士高, 于洪浩. 复合金属光栅模式分离与高性能气体传感器应用. 物理学报, 2015, 64(14): 147302. doi: 10.7498/aps.64.147302
    [16] 唐春梅, 郭微, 朱卫华, 刘明熠, 张爱梅, 巩江峰, 王辉. 内掺过渡金属非典型富勒烯M@C22(M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni) 几何结构、电子结构、稳定性和磁性的密度泛函研究. 物理学报, 2012, 61(2): 026101. doi: 10.7498/aps.61.026101
    [17] 李雪梅, 张建平. 5-(2-芳氧甲基苯并咪唑-1-亚甲基)-1,3,4噁二唑-2-硫酮的结构,光谱与热力学性质的理论研究. 物理学报, 2010, 59(11): 7736-7742. doi: 10.7498/aps.59.7736
    [18] 唐春梅, 朱卫华, 邓开明. 内掺过渡金属富勒烯衍生物Ni@C20H20几何结构、成键和电磁性质的密度泛函计算研究. 物理学报, 2009, 58(7): 4567-4572. doi: 10.7498/aps.58.4567
    [19] 叶贞成, 蔡 钧, 张书令, 刘洪来, 胡 英. 方阱链流体在固液界面分布的密度泛函理论研究. 物理学报, 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
    [20] 谭明秋, 陶向明, 徐小军, 蔡建秋. 含铀化合物UAl3和USn3电子结构的密度泛函研究. 物理学报, 2003, 52(12): 3142-3149. doi: 10.7498/aps.52.3142
计量
  • 文章访问数:  11534
  • PDF下载量:  310
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-29
  • 修回日期:  2019-07-17
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-05

/

返回文章
返回