搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压调控过渡金属硫族化合物及异质结构的光电性质

李辰恺 朱金龙

引用本文:
Citation:

高压调控过渡金属硫族化合物及异质结构的光电性质

李辰恺, 朱金龙

Pressure-Induced Tuning of Optoelectronic Properties in Semiconducting Transition Metal Chalcogenides and Their Heterostructures

LI Chenkai, ZHU Jinglong
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 二维半导体过渡金属硫族化合物凭借其层数依赖的带隙、强激子效应及独特的本征谷自旋极化等特性,成为光电子学的研究热点. 转角堆垛形成的异质结中的层间激子与莫尔条纹成为了实现相关态涌现的有效平台,并为探索量子多体物理与关联现象的研究提供了理想平台. 针对半导体过渡金属硫族化合物及其异质结的光电性质的高压调控,本文首先介绍了高压技术,之后分别讨论了单体与异质结的光电性质的高压演化,并重点探讨了:一、在原子尺度上诱导的结构相变与在电子维度上的能带演化,二、层间相互作用的演化与对性质的影响机制,三、在激子束缚态的调控与机制,四、莫尔超晶格势场的分布. 特别揭示了高压在强化层间轨道杂化、诱发奇异量子相等方面的独特优势. 最后,展望了该领域的未来研究方向,为量子信息器件设计、强关联电子系统模拟及新奇激子物态研究提供新思路.
    Semiconducting transition metal chalcogenides exhibit layer-dependent bandgaps, strong excitonic effects, and spin-valley coupling, positioning them as promising candidates for optoelectronic applications. In heterostructures formed by van der Waals stacking, interlayer excitons and moiré superlattices have emerged as a unique platform for exploring quantum many-body physics and correlated electronic phases. Subjecting semiconducting transition metal dichalcogenides and their heterostructures to high pressure enables precise, continuous tuning of optoelectronic properties through anisotropic lattice compression-particularly the dramatic reduction of interlayer distances-which profoundly enhances interlayer orbital hybridization beyond conventional tuning methods. This review systematically presents diamond anvil cell techniques for in situ high-pressure characterization and analyzes the pressure-induced evolution in semiconducting transition metal dichalcogenides and their heterostructures. It focuses on four key aspects: (1) Atomic-scale structural phase transitions (e.g., layer sliding) and corresponding electronic band structure modifications, including direct-to-indirect bandgap transitions in monolayers (K-Λ crossover) and metallization/superconductivity; (2) Quantifiable enhancement of interlayer interactions revealed by layer-dependent phonon shifts and spin-orbit splitting amplification, along with their impact mechanisms on properties; (3) Modulation of exciton binding states and associated mechanisms, overing intralayer excitons, trions and interlayer excitons; (4) Moiré potential modulation where high pressure significantly deepens potentials via interlayer compression. The review particularly highlights the unique capability of high pressure in enhancing interlayer orbital hybridization, thereby inducing exotic quantum phases. Finally, future research directions in this field are outlined to advance quantum information devices design, strongly correlated electron system simulation, and the novel excitonic state exploration.
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004Science 306 666

    [2]

    Chen H, Müller M B, Gilmore K J, Wallace G G, Li D 2008Adv. Mater. 20 3557

    [3]

    Geim A K, Novoselov K S 2007Nat. Mater. 6 183

    [4]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008Solid State Commun. 146 351

    [5]

    Chen K, Zhou X, Cheng X, Qiao R, Cheng Y, Liu C, Xie Y, Yu W, Yao F, Sun Z, Wang F, Liu K, Liu Z 2019Nat. Photonics 13 754

    [6]

    Lee C, Wei X, Kysar J W, Hone J 2008Science 321 385

    [7]

    Lee C, Li Q, Kalb W, Liu X-Z, Berger H, Carpick R W, Hone J 2010Science 328 76

    [8]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018Nature 556 43

    [9]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018Nature 556 80

    [10]

    Hanlon D, Backes C, Doherty E, Cucinotta C S, Berner N C, Boland C, Lee K, Harvey A, Lynch P, Gholamvand Z, Zhang S, Wang K, Moynihan G, Pokle A, Ramasse Q M, McEvoy N, Blau W J, Wang J, Abellan G, Hauke F, Hirsch A, Sanvito S, O’Regan D D, Duesberg G S, Nicolosi V, Coleman J N 2015Nat. Commun. 6 8563

    [11]

    Qiao J, Kong X, Hu Z-X, Yang F, Ji W 2014Nat. Commun. 5 4475

    [12]

    Lebedev A V, Blatter G 2011Phys. Rev. Lett. 107 076803

    [13]

    Qian X, Liu J, Fu L, Li J 2014Science 346 1344

    [14]

    Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G 2012Phys. Rev. Lett. 108 155501

    [15]

    Tian Y, Xu B, Yu D, Ma Y, Wang Y, Jiang Y, Hu W, Tang C, Gao Y, Luo K, Zhao Z, Wang L-M, Wen B, He J, Liu Z 2013Nature 493 385

    [16]

    Liu X, Chen X, Ma H-A, Jia X, Wu J, Yu T, Wang Y, Guo J, Petitgirard S, Bina C R, Jacobsen S D 2016Sci. Rep. 6 30518

    [17]

    Watanabe K, Taniguchi T, Kanda H 2004Nat. Mater. 3 404

    [18]

    Kubota Y, Watanabe K, Tsuda O, Taniguchi T 2007Science 317 932

    [19]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010Phys. Rev. Lett. 105 136805

    [20]

    Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B, Feng J 2012Nat. Commun. 3 887

    [21]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012Nat. Nanotechnol. 7 699

    [22]

    Xiao D, Liu G-B, Feng W, Xu X, Yao W 2012Phys. Rev. Lett. 108 196802

    [23]

    Song I, Park C, Choi H C 2015RSC Adv. 5 7495

    [24]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017Nat. Rev. Mater. 2 17033

    [25]

    He K, Poole C, Mak K F, Shan J 2013Nano Lett. 13 2931

    [26]

    Xu M, Liang T, Shi M, Chen H 2013Chem. Rev. 113 3766

    [27]

    Geim A K, Grigorieva I V 2013Nature 499 419

    [28]

    Chen X, Lian Z, Meng Y, Ma L, Shi S-F 2023Nat. Commun. 14 8233

    [29]

    Regan E C, Wang D, Paik E Y, Zeng Y, Zhang L, Zhu J, MacDonald A H, Deng H, Wang F 2022Nat. Rev. Mater. 7 778

    [30]

    Du L 2024Nat. Rev. Phys. 6 157

    [31]

    Wilson N P, Yao W, Shan J, Xu X 2021Nature 599 383

    [32]

    Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019Nature 567 76

    [33]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019Nature 567 66

    [34]

    Regan E C, Wang D, Jin C, Bakti Utama M I, Gao B, Wei X, Zhao S, Zhao W, Zhang Z, Yumigeta K, Blei M, Carlström J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, Wang F 2020Nature 579 359

    [35]

    Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J, Mak K F 2020Nature 579 353

    [36]

    Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F, Shan J 2020Nature 587 214

    [37]

    Guo Y, Pack J, Swann J, Holtzman L, Cothrine M, Watanabe K, Taniguchi T, Mandrus D G, Barmak K, Hone J, Millis A J, Pasupathy A, Dean C R 2025Nature 637 839

    [38]

    Liu Z 2024Acta Phys. Sin. 73 207303(in Chinese) [刘钊2024物理学报 73207303]

    [39]

    Tang Y-H 2023Acta Phys. Sin. 72 027802(in Chinese) [杨衍浩2023物理学报 72027802]

    [40]

    Pei S, Wang Z, Xia J 2022Mater. Des. 213 110363

    [41]

    Cheng X, Li Y, Shang J, Hu C, Ren Y, Liu M, Qi Z 2018Nano Res. 11 855

    [42]

    Chi Z-H, Zhao X-M, Zhang H, Goncharov A F, Lobanov S S, Kagayama T, Sakata M, Chen X-J 2014Phys. Rev. Lett. 113 036802

    [43]

    Dou X, Ding K, Jiang D, Sun B 2014ACS Nano 8 7458

    [44]

    Fu L, Wan Y, Tang N, Ding Y-m, Gao J, Yu J, Guan H, Zhang K, Wang W, Zhang C, Shi J-j, Wu X, Shi S-F, Ge W, Dai L, Shen B 2017Sci. Adv. 3 e1700162

    [45]

    Hromadová L, Martoňák R, Tosatti E 2013Phys. Rev. B 87 144105

    [46]

    Li F, Yan Y, Han B, Li L, Huang X, Yao M, Gong Y, Jin X, Liu B, Zhu C, Zhou Q, Cui T 2015Nanoscale 7 9075

    [47]

    Nayak A P, Pandey T, Voiry D, Liu J, Moran S T, Sharma A, Tan C, Chen C-H, Li L-J, Chhowalla M, Lin J-F, Singh A K, Akinwande D 2015Nano Lett. 15 346

    [48]

    Okajima M, Endo S, Akahama Y, Narita S-i 1984Jpn. J. Appl. Phys. 23 15

    [49]

    Li Q, Wang Y, Pan W, Yang W, Zou B, Tang J, Quan Z 2017Angew. Chem., Int. Ed. 56 15969

    [50]

    Errandonea D, Bandiello E, Segura A, Hamlin J J, Maple M B, Rodriguez-Hernandez P, Muñoz A 2014J. Alloys Compd. 587 14

    [51]

    Zhou Y, Chen X, Li N, Zhang R, Wang X, An C, Zhou Y, Pan X, Song F, Wang B, Yang W, Yang Z, Zhang Y 2016AIP Adv. 6 075008

    [52]

    Vellinga M B, de Jonge R, Haas C 1970J. Solid State Chem. 2 299

    [53]

    XU J-A, MAO H-G, BELL P 1987Acta Phys. Sin. 36 501(in Chinese) [徐济安, 毛河光, BELL P 1987物理学报 36501]

    [54]

    Ana B G, Gábor M, Aurelian R, Helena J S 2018C. R. Chim. 21 1095

    [55]

    Akahama Y, Kawamura H 2006J. Appl. Phys. 100

    [56]

    Li T, Jiang S, Sivadas N, Wang Z, Xu Y, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Fennie C J, Fai Mak K, Shan J 2019Nat. Mater. 18 1303

    [57]

    Yankowitz M, Jung J, Laksono E, Leconte N, Chittari B L, Watanabe K, Taniguchi T, Adam S, Graf D, Dean C R 2018Nature 557 404

    [58]

    Yao X, Bai Y, Jin C, Zhang X, Zheng Q, Xu Z, Chen L, Wang S, Liu Y, Wang J, Zhu J 2023Nat. Commun. 14 4301

    [59]

    Shen G, Wang Y, Dewaele A, Wu C, Fratanduono D E, Eggert J, Klotz S, Dziubek K F, Loubeyre P, Fat’yanov O V, Asimow P D, Mashimo T, Wentzcovitch R M M 2020High Pressure Res. 40 299

    [60]

    Yamaoka H, Zekko Y, Jarrige I, Lin J-F, Hiraoka N, Ishii H, Tsuei K-D, Mizuki J i 2012J. Appl. Phys. 112

    [61]

    Noack R A, Holzapfel W B (Timmerhaus K D, Barber M S ed) 1979High-Pressure Science and Technology: Volume 1: Physical Properties and Material Synthesis / Volume 2: Applications and Mechanical Properties (Boston, MA: Springer US) pp748-753

    [62]

    Yen J, Nicol M 1992J. Appl. Phys. 72 5535

    [63]

    Tardieu A, Cansell F, Petitet J P 1990J. Appl. Phys. 68 3243

    [64]

    Wang X, Chen X, Zhou Y, Park C, An C, Zhou Y, Zhang R, Gu C, Yang W, Yang Z 2017Sci. Rep. 7 46694

    [65]

    Duwal S, Yoo C-S 2016J. Phys. Chem. C 120 5101

    [66]

    Zhao Z, Zhang H, Yuan H, Wang S, Lin Y, Zeng Q, Xu G, Liu Z, Solanki G K, Patel K D, Cui Y, Hwang H Y, Mao W L 2015Nat. Commun. 6 7312

    [67]

    Lee C, Yan H, Brus L E, Heinz T F, Hone J, Ryu S 2010ACS Nano 4 2695

    [68]

    Zhao W, Ghorannevis Z, Amara K K, Pang J R, Toh M, Zhang X, Kloc C, Tan P H, Eda G 2013Nanoscale 5 9677

    [69]

    Molina-Sánchez A, Wirtz L 2011Phys. Rev. B 84 155413

    [70]

    Li C, Liu Y, Yang Q, Zheng Q, Yan Z, Han J, Lin J, Wang S, Qi J, Liu Y, Zhu J 2022J. Phys. Chem. Lett. 13 161

    [71]

    Luo J, Li C, Liu J, Liu Y, Xiao W, Zheng R, Zheng Q, Han J, Zou T, Cheng W, Yao X, Liu Y, Zhu J 2024Appl. Phys. Lett. 124 033104

    [72]

    Du G, Zhao L, Li S, Huang J, Fang S, Han W, Li J, Du Y, Ming J, Zhang T, Zhang J, Kang J, Li X, Xu W, Chen Y 2025Nat. Commun. 16 4901

    [73]

    Wieting T J 1973Solid State Commun. 12 931

    [74]

    Xie X, Ding J, Wu B, Zheng H, Li S, He J, Liu Z, Wang J-T, Liu Y 2023Phys. Rev. B 108 155302

    [75]

    Liang L, Zhang J, Sumpter B G, Tan Q-H, Tan P-H, Meunier V 2017ACS Nano 11 11777

    [76]

    Zhao Y, Luo X, Li H, Zhang J, Araujo P T, Gan C K, Wu J, Zhang H, Quek S Y, Dresselhaus M S, Xiong Q 2013Nano Lett. 13 1007

    [77]

    Dong J, Ouyang G 2020Chin. Phys. B 29 086403

    [78]

    Han B, Li F, Li L, Huang X, Gong Y, Fu X, Gao H, Zhou Q, Cui T 2017J. Phys. Chem. Lett. 8 941

    [79]

    Chi Z, Chen X, Yen F, Peng F, Zhou Y, Zhu J, Zhang Y, Liu X, Lin C, Chu S, Li Y, Zhao J, Kagayama T, Ma Y, Yang Z 2018Phys. Rev. Lett. 120 037002

    [80]

    Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P-H, Eda G 2013ACS Nano 7 791

    [81]

    Pandey S K, Das R, Mahadevan P 2020ACS Omega 5 15169

    [82]

    Fan X, Chang C H, Zheng W T, Kuo J-L, Singh D J 2015J. Phys. Chem. C 119 10189

    [83]

    Kuc A, Zibouche N, Heine T 2011Phys. Rev. B 83 245213

    [84]

    Bussolotti F, Kawai H, Ooi Z E, Chellappan V, Thian D, Pang A L C, Goh K E J 2018Nano Futures 2 032001

    [85]

    Ye Y, Dou X, Ding K, Jiang D, Yang F, Sun B 2016Nanoscale 8 10843

    [86]

    Fu X, Li F, Lin J-F, Gong Y, Huang X, Huang Y, Han B, Zhou Q, Cui T 2017J. Phys. Chem. Lett. 8 3556

    [87]

    Pimenta Martins L G, Carvalho B R, Occhialini C A, Neme N P, Park J-H, Song Q, Venezuela P, Mazzoni M S C, Matos M J S, Kong J, Comin R 2022ACS Nano 16 8064

    [88]

    Qiao W, Sun H, Fan X, Jin M, Liu H, Tang T, Xiong L, Niu B, Li X, Wang G 2022Crystals 12

    [89]

    Li Q, Sui L, Niu G, Jiang J, Zhang Y, Wu G, Jin M, Yuan K 2020J. Phys. Chem. C 124 11183

    [90]

    Dou X, Ding K, Jiang D, Fan X, Sun B 2016ACS Nano 10 1619

    [91]

    Hsu W-T, Quan J, Pan C-R, Chen P-J, Chou M-Y, Chang W-H, MacDonald A H, Li X, Lin J-F, Shih C-K 2022Phys. Rev. B 106 125302

    [92]

    Steeger P, Graalmann J-H, Schmidt R, Kupenko I, Sanchez-Valle C, Marauhn P, Deilmann T, de Vasconcellos S M, Rohlfing M, Bratschitsch R 2023Nano Lett. 23 8947

    [93]

    Bai Z, Zhang H, He J, He D, Wang J, Li G, Bai J, Zhao K, Yu X, Wang Y, Zhang X 2023Nano Res. 16 12738

    [94]

    Chen Y, Ke F, Ci P, Ko C, Park T, Saremi S, Liu H, Lee Y, Suh J, Martin L W, Ager J W, Chen B, Wu J 2017Nano Lett. 17 194

    [95]

    Qin X, Zhang G, Chen L, Wang Q, Wang G, Zhang H, Li Y, Liu C 2024Ultrafast Sci. 4 0044

    [96]

    Tu H, Pan L, Qi H, Zhang S, Li F, Sun C, Wang X, Cui T 2023J. Phys.: Condens. Matter 35 253002

    [97]

    Bai Z, Zhang H, He J, He D, Wang J, Wu W, Zhang Y, Wang W, Wang Y, Yu X, Zhang X 2025Adv. Electron. Mater. 11 2400333

    [98]

    Li Z, Qin F, Ong C S, Huang J, Xu Z, Chen P, Qiu C, Zhang X, Zhang C, Zhang X, Eriksson O, Rubio A, Tang P, Yuan H 2023Nano Lett. 23 10282

    [99]

    Fu X, Li F, Lin J-F, Gong Y, Huang X, Huang Y, Gao H, Zhou Q, Cui T 2018J. Phys. Chem. C 122 5820

    [100]

    Yan W, Meng L, Meng Z, Weng Y, Kang L, Li X-a 2019J. Phys. Chem. C 123 30684

    [101]

    Villafañe V, Kremser M, Hübner R, Petrić M M, Wilson N P, Stier A V, Müller K, Florian M, Steinhoff A, Finley J J 2023Phys. Rev. Lett. 130 026901

    [102]

    Huang S, Liang L, Ling X, Puretzky A A, Geohegan D B, Sumpter B G, Kong J, Meunier V, Dresselhaus M S 2016Nano Lett. 16 1435

    [103]

    Puretzky A A, Liang L, Li X, Xiao K, Sumpter B G, Meunier V, Geohegan D B 2016ACS Nano 10 2736

    [104]

    Fan W, Zhu X, Ke F, Chen Y, Dong K, Ji J, Chen B, Tongay S, Ager J W, Liu K, Su H, Wu J 2015Phys. Rev. B 92 241408

    [105]

    Xie X, Ding J, Wu B, Zheng H, Li S, Wang C-T, He J, Liu Z, Wang J-T, Liu Y 2023Nano Lett. 23 8833

    [106]

    Jiao C, Pei S, Zhang Z, Li C, Zhu J, Qin J, Zhang M, Wen T, Zhou Y, Wang Z, Xia J 2024Appl. Phys. Rev. 11 031417

    [107]

    Zhang Z, Jiao C, Pei S, Zhou X, Qin J, Zhang W, Zhou Y, Wang Z, Xia J 2024Sci. China: Phys., Mech. Astron. 67 288211

    [108]

    Li C, Cheng W, Zhang X, Zhang P, Zheng Q, Yan Z, Han J, Dai G, Wang S, Quan Z, Liu Y, Zhu J 2023J. Phys. Chem. C 127 7784

    [109]

    Yan Y, Feng D, Zhu J, Li F 2025J. Alloys Compd. 1014 178651

    [110]

    Li S, Zheng H, Ding J, Wu B, He J, Liu Z, Liu Y 2022Nano Res. 15 7688

    [111]

    Xia J, Yan J, Wang Z, He Y, Gong Y, Chen W, Sum T C, Liu Z, Ajayan P M, Shen Z 2021Nat. Phys. 17 92

    [112]

    Kang J, Tongay S, Zhou J, Li J, Wu J 2013Appl. Phys. Lett. 102 012111

    [113]

    Tebyetekerwa M, Zhang J, Saji S E, Wibowo A A, Rahman S, Truong T N, Lu Y, Yin Z, Macdonald D, Nguyen H T 2021Cell Rep. Phys. Sci. 2 100509

    [114]

    Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J, Sohn J I, Molas M R, Koperski M, Watanabe K, Taniguchi T, Novoselov K S, Gorbachev R V, Shin H S, Fal’ko V I, Tartakovskii A I 2019Nature 567 81

    [115]

    Kunstmann J, Mooshammer F, Nagler P, Chaves A, Stein F, Paradiso N, Plechinger G, Strunk C, Schüller C, Seifert G, Reichman D R, Korn T 2018Nat. Phys. 14 801

    [116]

    Li Y, Song Z 2023J. Phys.: Conf. Ser. 2566 012105

    [117]

    Zhu M, Zhang Z, Zhang T, Liu D, Zhang H, Zhang Z, Li Z, Cheng Y, Huang W 2022Nano Lett. 22 4528

    [118]

    Ma X, Fu S, Ding J, Liu M, Bian A, Hong F, Sun J, Zhang X, Yu X, He D 2021Nano Lett. 21 8035

    [119]

    Miller B, Steinhoff A, Pano B, Klein J, Jahnke F, Holleitner A, Wurstbauer U 2017Nano Lett. 17 5229

    [120]

    Jiang C, Xu W, Rasmita A, Huang Z, Li K, Xiong Q, Gao W-b 2018Nat. Commun. 9 753

    [121]

    Zhang W, Wang Q, Chen Y, Wang Z, Wee A T S 20162D Mater. 3 022001

    [122]

    Gong Y, Lin J, Wang X, Shi G, Lei S, Lin Z, Zou X, Ye G, Vajtai R, Yakobson B I, Terrones H, Terrones M, Tay Beng K, Lou J, Pantelides S T, Liu Z, Zhou W, Ajayan P M 2014Nat. Mater. 13 1135

    [123]

    Rivera P, Schaibley J R, Jones A M, Ross J S, Wu S, Aivazian G, Klement P, Seyler K, Clark G, Ghimire N J, Yan J, Mandrus D G, Yao W, Xu X 2015Nat. Commun. 6 6242

    [124]

    Choudhary N, Park J, Hwang J Y, Chung H-S, Dumas K H, Khondaker S I, Choi W, Jung Y 2016Sci. Rep. 6 25456

    [125]

    Jiang Y, Chen S, Zheng W, Zheng B, Pan A 2021Light:Sci. Appl. 10 72

    [126]

    Zhang Z, Wang Y, Watanabe K, Taniguchi T, Ueno K, Tutuc E, LeRoy B J 2020Nat. Phys. 16 1093

    [127]

    Li H, Li S, Naik M H, Xie J, Li X, Wang J, Regan E, Wang D, Zhao W, Zhao S, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Louie S G, Wang F, Crommie M F 2021Nat. Mater. 20 945

    [128]

    Zhang C, Chuu C-P, Ren X, Li M-Y, Li L-J, Jin C, Chou M-Y, Shih C-K 2017Sci. Adv. 3 e1601459

    [129]

    Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019Nature 567 71

    [130]

    Baek H, Brotons-Gisbert M, Koong Z X, Campbell A, Rambach M, Watanabe K, Taniguchi T, Gerardot B D 2020Sci. Adv. 6 eaba8526

    [131]

    Soltero I, Kaliteevski M A, McHugh J G, Enaldiev V, Fal’ko V I 2024Nano Lett. 24 1996

    [132]

    Pimenta Martins L G, Ruiz-Tijerina D A, Occhialini C A, Park J-H, Song Q, Lu A-Y, Venezuela P, Cançado L G, Mazzoni M S C, Matos M J S, Kong J, Comin R 2023Nat. Nanotechnol. 18 1147

    [133]

    Enaldiev V V, Ferreira F, Magorrian S J, Fal’ko V I 20212D Mater. 8 025030

    [134]

    Xie X, Chen J, Li S, Ding J, He J, Liu Z, Wang J-T, Liu Y 2025Nano Lett. 25 8571

    [135]

    Zhao W, Regan E C, Wang D, Jin C, Hsieh S, Wang Z, Wang J, Wang Z, Yumigeta K, Blei M, Watanabe K, Taniguchi T, Tongay S, Yao N Y, Wang F 2021Nano Lett. 21 8910

    [136]

    Jo S, Costanzo D, Berger H, Morpurgo A F 2015Nano Lett. 15 1197

    [137]

    Shi W, Ye J, Zhang Y, Suzuki R, Yoshida M, Miyazaki J, Inoue N, Saito Y, Iwasa Y 2015Sci. Rep. 5 12534

    [138]

    Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R, Iwasa Y 2012Science 338 1193

    [139]

    Ding D, Qu Z, Han X, Han C, Zhuang Q, Yu X-L, Niu R, Wang Z, Li Z, Gan Z, Wu J, Lu J 2022Nano Lett. 22 7919

    [140]

    Piatti E, De Fazio D, Daghero D, Tamalampudi S R, Yoon D, Ferrari A C, Gonnelli R S 2018Nano Lett. 18 4821

    [141]

    Wang L, Shih E-M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, Pasupathy A N, Dean C R 2020Nat. Mater. 19 861

    [142]

    Huang X, Wang T, Miao S, Wang C, Li Z, Lian Z, Taniguchi T, Watanabe K, Okamoto S, Xiao D, Shi S-F, Cui Y-T 2021Nat. Phys. 17 715

    [143]

    Xiong R, Nie J H, Brantly S L, Hays P, Sailus R, Watanabe K, Taniguchi T, Tongay S, Jin C 2023Science 380 860

    [144]

    Bai Y, Li Y, Liu S, Guo Y, Pack J, Wang J, Dean C R, Hone J, Zhu X 2023Nano Lett. 23 11621

    [145]

    Wang Z, Rhodes D A, Watanabe K, Taniguchi T, Hone J C, Shan J, Mak K F 2019Nature 574 76

    [146]

    Nguyen P X, Ma L, Chaturvedi R, Watanabe K, Taniguchi T, Shan J, Mak K F 2025Science 388 274

    [147]

    Gao Y, Xu Q, Farooq M U, Xian L, Huang L 2023Nano Lett. 23 7921

    [148]

    Brzezińska M, Grytsiuk S, Rösner M, Gibertini M, Rademaker L 20252D Mater. 12 015003

    [149]

    Arovas D P, Berg E, Kivelson S A, Raghu S 2022Annu. Rev. Condens. Matter Phys. 13 239

    [150]

    Giuliani A, Mastropietro V 2010Commun. Math. Phys. 293 301

  • [1] 刘钊. 莫尔超晶格中的分数化拓扑量子态. 物理学报, doi: 10.7498/aps.73.20241029
    [2] 郭琳, 杨小帆, 程二建, 泮炳霖, 朱楚楚, 李世燕. 三角晶格自旋液体候选材料NaYbSe2在高压下的超导转变. 物理学报, doi: 10.7498/aps.72.20230730
    [3] 吴泽飞, 黄美珍, 王宁. 二维莫尔超晶格中的非线性霍尔效应. 物理学报, doi: 10.7498/aps.72.20231324
    [4] 郭瑞平, 俞弘毅. 二维半导体莫尔超晶格中随位置与动量变化的层间耦合. 物理学报, doi: 10.7498/aps.72.20222046
    [5] 李听昕. 二维范德瓦耳斯半导体莫尔超晶格实验研究进展. 物理学报, doi: 10.7498/aps.71.20220347
    [6] 王仲锐, 姜宇航. 转角二维量子材料中平带相关的新奇电子态物性. 物理学报, doi: 10.7498/aps.71.20220064
    [7] 詹真, 张亚磊, 袁声军. 石墨烯莫尔超晶格的晶格弛豫与衬底效应. 物理学报, doi: 10.7498/aps.71.20220872
    [8] 胡倩颖, 许杨. 二维半导体材料中激子对介电屏蔽效应的探测及其应用. 物理学报, doi: 10.7498/aps.71.20220054
    [9] 舒衍涛, 张有为, 王顺. 基于过渡金属硫族化合物同质结的光电探测器. 物理学报, doi: 10.7498/aps.70.20210859
    [10] 吕新宇, 李志强. 石墨烯莫尔超晶格体系的拓扑性质及光学研究进展. 物理学报, doi: 10.7498/aps.68.20191317
    [11] 周愈之. 过渡金属硫族化合物柔性基底体系的模型与应用. 物理学报, doi: 10.7498/aps.67.20181571
    [12] 李卫胜, 周健, 王瀚宸, 汪树贤, 于志浩, 黎松林, 施毅, 王欣然. 二维半导体过渡金属硫化物的逻辑集成器件. 物理学报, doi: 10.7498/aps.66.218503
    [13] 段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田. 高压下富氢化合物的结构与奇异超导电性. 物理学报, doi: 10.7498/aps.66.036102
    [14] 卢晓波, 张广宇. 石墨烯莫尔超晶格. 物理学报, doi: 10.7498/aps.64.077305
    [15] 周大伟, 卢成, 李根全, 宋金璠, 宋玉玲, 包刚. 高压下金属Ba的结构稳定性以及热动力学的第一原理研究. 物理学报, doi: 10.7498/aps.61.146301
    [16] 马丽, 高勇. 半超结SiGe高压快速软恢复开关二极管. 物理学报, doi: 10.7498/aps.58.529
    [17] 梁拥成, 郭万林, 方 忠. 过渡金属化合物OsB2与OsO2低压缩性的第一性原理计算研究. 物理学报, doi: 10.7498/aps.56.4847
    [18] 孙 博, 刘绍军, 祝文军. Fe在高压下第一性原理计算的芯态与价态划分. 物理学报, doi: 10.7498/aps.55.6589
    [19] 高 琨, 刘晓静, 刘德胜, 解士杰. 极化子单激发态的反向极化研究. 物理学报, doi: 10.7498/aps.54.5324
    [20] 王秀英, 孙力玲, 刘日平, 姚玉书, 张 君, 王文魁. 高压下Co在Zr46.75Ti8.25Cu7.5Ni10Be27.5大块金属玻璃过冷液相区中的扩散. 物理学报, doi: 10.7498/aps.53.3845
计量
  • 文章访问数:  23
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-25

/

返回文章
返回