搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过渡金属硫族化合物柔性基底体系的模型与应用

周愈之

引用本文:
Citation:

过渡金属硫族化合物柔性基底体系的模型与应用

周愈之

Model and applications of transition metal dichalcogenides based compliant substrate epitaxy system

Zhou Yu-Zhi
PDF
导出引用
  • 柔性基底体系是晶体外延生长领域于20世纪90年代提出的概念.其核心思想是利用超薄的基底,使其在外延生长时能同时与外延晶膜发生应变,以抵消二者之间的晶格失配,从而减少外延晶膜中的位错,提高晶膜的质量.但是人工制备性能优良的超薄基底往往需要较为复杂的工艺.另一方面,过渡金属硫族化合物由于其层状结构特性和层间较弱的范德瓦耳斯相互作用,是天然的柔性基底.本文介绍近几年来新发展的过渡金属硫族化合物柔性基底体系的模型及应用.以Au-MoS2作为柔性基底外延生长的原型,结合密度泛函理论、线性弹性理论以及位错理论构建模型,并根据计算结果解释了早先利用透射电子显微镜观测到的Au薄膜在MoS2上外延生长的相关实验现象.此外,本文还介绍了受到该理论模型启发的相关实验工作,特别是利用Au薄膜分离大面积、单层、高质量MoS2的技术.最后,讨论了在该领域内值得关注和进一步探索的理论问题.
    The concept of compliant substrate epitaxy was first proposed by the scientists engaged in crystal growth in the early 1990s. The core idea is to take advantage of such an ultra-thin substrate that the film and the substrate generate strain together to relieve the lattice mismatch during the epitaxy growth. The quality of the epitaxial film is improved due to the reduction of the mismatch dislocation density. However, the preparation of the artificial ultra-thin substrate with good quality requires rather complicated fabrication process. On the other hand, many transition metal dichalcogenides naturally form the compliant substrates, due to their layered structure and weak van der Waals interlayer interaction. In this paper, we introduce the transition metal dichalcogenides based compliant substrate epitaxy model and relevant applications. Through combining density functional theory, linear elasticity theory and dislocation theory, we introduce the model comprehensively by using the Au-MoS2 as a prototypical example. And we explain the experimental results of Au growing on MoS2 from the early transition electron microscopy. In addition, we introduce the experimental work related to the model, especially the Au-mediated exfoliation of large, monolayer and high-quality MoS2. Future directions and relevant important problems to be solved are also discussed.
      通信作者: 周愈之, zhou_yuzhi@iapcm.ac.cn
    • 基金项目: 国家自然科学基金(批准号:91730302)资助的课题.
      Corresponding author: Zhou Yu-Zhi, zhou_yuzhi@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 91730302).

    [1] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147
    [2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699
    [3] Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766
    [4] Fang H, Chuang S, Chang T C, Takei K, Takahashi T, Javey A 2012 Nano Lett. 12 3788
    [5] Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898
    [6] Wei Z, Wang Q Q, Guo Y T, Li J W, Shi D X, Zhang G Y 2018 Acta Phys. Sin. 67 128103 (in Chinese)[魏争, 王琴琴, 郭玉拓, 李佳蔚, 时东霞, 张广宇 2018 物理学报 67 128103]
    [7] Jacobs M H, Stowell M J 1965 Philos. Mag. 11 591
    [8] Jesser W A, Kuhlmann-Wilsdorf D 1967 J. Appl. Phys. 38 5128
    [9] Honjo G, Yagi K 1969 J. Vac. Sci. Technol. 6 576
    [10] Pashley D W, Stowell M J, Jacobs M H, Law T J 1964 Philos. Mag. 10 127
    [11] Jacobs M H, Pashley D W, Stowell M J 1966 Philos. Mag. 13 129
    [12] Jesser W A, Kuhlmann-Wilsdorf D 1967 Phys. Stat. Sol. 19 95
    [13] Zhou Y, Kiriya D, Haller E E, Ager J W, Javey A, Chrzan D C 2016 Phys. Rev. B 93 054106
    [14] Kiriya D, Zhou Y, Nelson C, Hettick M, Madhvapathy S R, Chen K, Zhao P, Tosun M, Minor A M, Chrzan D C, Javey A 2015 Adv. Funct. Mater. 25 6257
    [15] Zhu X, Song K, Tang K, Bai W, Bai J, Zhu L, Yang J, Zhang Y, Qi R, Huang R, Tang X, Chu J 2017 J. Alloys Compd. 729 95
    [16] Borodinova T I, Styopkin V I, Vasko A A, Kutsenko V, Marchenko O A 2018 J. Nano- Electron. Phys. 10 03017
    [17] Desai S, Madhvapathy S, Amani M, Kiriya D, Hettick M, Tosun M, Zhou Y, Dubey M, Ager J, Chrzan D, Javey A 2016 Adv. Mater. 28 4053
    [18] Lo Y H 1991 Appl. Phys. Lett. 59 2311
    [19] Woltersdorf J, Pippel E 1983 Phys. Status Solidi A 78 475
    [20] Pippel E, Woltersdorf J 1983 Phys. Status Solidi A 79 189
    [21] Chua C L, Hsu W Y, Lin C H, Christenson G, Lo Y H 1994 Appl. Phys. Lett. 64 3640
    [22] Jones A M, Jewell J L, Mabon J C, Reuter E E, Bishop S G, Roh S D, Coleman J J 1999 Appl. Phys. Lett. 74 1000
    [23] Bourret A 2000 Appl. Surf. Sci. 164 3
    [24] Powell A R, Iyer S S, LeGoues F K 1994 Appl. Phys. Lett. 64 1856
    [25] Hansen D, Moran P, Dunn K, Babcock S, Matyi R, Kuech T 1998 J. Cryst. Growth 195 144
    [26] Carter-Coman C, Bicknell-Tassius R, Brown A S, Jokerst N M 1997 Appl. Phys. Lett. 70 1754
    [27] Ejeckam F E, Seaford M L, Lo Y H, Hou H Q, Hammons B E 1997 Appl. Phys. Lett. 71 776
    [28] Ayers J 2008 J. Electron. Mater. 37 1511
    [29] Grimme S 2006 J. Comput. Chem. 27 1787
    [30] Hirth J P, Lothe J 1991 Theory of Dislocations (Florida, USA: Krieger Publishing Company)
    [31] Grönbeck H, Curioni A, Andreoni W 2000 J. Am. Chem. Soc. 122 3839
    [32] Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H, Sindoro M, Zhang H 2017 Chem. Rev. 117 6225
    [33] Lin Z, McCreary A, Briggs N, Subramanian S, Zhang K, Sun Y, Li X, Borys N J, Yuan H, Fullerton-Shirey S K, Chernikov A, Zhao H, McDonnell S, Lindenberg A M, Xiao K, LeRoy B J, Drndić M, Hwang J C M, Park J, Chhowalla M, Schaak R E, Javey A, Hersam M C, Robinson J, Terrones M 2016 2D Mater. 3 042001
    [34] McDonnell S J, Wallace R M 2016 Thin Solid Films 616 482
    [35] Liang T, Phillpot S R, Sinnott S B 2009 Phys. Rev. B 79 245110
    [36] Liang T, Phillpot S R, Sinnott S B 2012 Phys. Rev. B 85 199903
    [37] Stewart J A, Spearot D E 2013 Model. Simul. Mater. Sci. Eng. 21 045003
    [38] Sun H, Sirott E W, Mastandrea J, Gramling H M, Zhou Y, Poschmann M, Taylor H K, Ager J W, Chrzan D C 2018 Phys. Rev. Mater. 2 094004
    [39] Komsa H P, Krasheninnikov A V 2013 Phys. Rev. B 88 085318
    [40] Ebnonnasir A, Narayanan B, Kodambaka S, Ciobanu C V 2014 Appl. Phys. Lett. 105 031603
    [41] Koda D S, Bechstedt F, Marques M, Teles L K 2016 J. Phys. Chem. C 120 10895

  • [1] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147
    [2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699
    [3] Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766
    [4] Fang H, Chuang S, Chang T C, Takei K, Takahashi T, Javey A 2012 Nano Lett. 12 3788
    [5] Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898
    [6] Wei Z, Wang Q Q, Guo Y T, Li J W, Shi D X, Zhang G Y 2018 Acta Phys. Sin. 67 128103 (in Chinese)[魏争, 王琴琴, 郭玉拓, 李佳蔚, 时东霞, 张广宇 2018 物理学报 67 128103]
    [7] Jacobs M H, Stowell M J 1965 Philos. Mag. 11 591
    [8] Jesser W A, Kuhlmann-Wilsdorf D 1967 J. Appl. Phys. 38 5128
    [9] Honjo G, Yagi K 1969 J. Vac. Sci. Technol. 6 576
    [10] Pashley D W, Stowell M J, Jacobs M H, Law T J 1964 Philos. Mag. 10 127
    [11] Jacobs M H, Pashley D W, Stowell M J 1966 Philos. Mag. 13 129
    [12] Jesser W A, Kuhlmann-Wilsdorf D 1967 Phys. Stat. Sol. 19 95
    [13] Zhou Y, Kiriya D, Haller E E, Ager J W, Javey A, Chrzan D C 2016 Phys. Rev. B 93 054106
    [14] Kiriya D, Zhou Y, Nelson C, Hettick M, Madhvapathy S R, Chen K, Zhao P, Tosun M, Minor A M, Chrzan D C, Javey A 2015 Adv. Funct. Mater. 25 6257
    [15] Zhu X, Song K, Tang K, Bai W, Bai J, Zhu L, Yang J, Zhang Y, Qi R, Huang R, Tang X, Chu J 2017 J. Alloys Compd. 729 95
    [16] Borodinova T I, Styopkin V I, Vasko A A, Kutsenko V, Marchenko O A 2018 J. Nano- Electron. Phys. 10 03017
    [17] Desai S, Madhvapathy S, Amani M, Kiriya D, Hettick M, Tosun M, Zhou Y, Dubey M, Ager J, Chrzan D, Javey A 2016 Adv. Mater. 28 4053
    [18] Lo Y H 1991 Appl. Phys. Lett. 59 2311
    [19] Woltersdorf J, Pippel E 1983 Phys. Status Solidi A 78 475
    [20] Pippel E, Woltersdorf J 1983 Phys. Status Solidi A 79 189
    [21] Chua C L, Hsu W Y, Lin C H, Christenson G, Lo Y H 1994 Appl. Phys. Lett. 64 3640
    [22] Jones A M, Jewell J L, Mabon J C, Reuter E E, Bishop S G, Roh S D, Coleman J J 1999 Appl. Phys. Lett. 74 1000
    [23] Bourret A 2000 Appl. Surf. Sci. 164 3
    [24] Powell A R, Iyer S S, LeGoues F K 1994 Appl. Phys. Lett. 64 1856
    [25] Hansen D, Moran P, Dunn K, Babcock S, Matyi R, Kuech T 1998 J. Cryst. Growth 195 144
    [26] Carter-Coman C, Bicknell-Tassius R, Brown A S, Jokerst N M 1997 Appl. Phys. Lett. 70 1754
    [27] Ejeckam F E, Seaford M L, Lo Y H, Hou H Q, Hammons B E 1997 Appl. Phys. Lett. 71 776
    [28] Ayers J 2008 J. Electron. Mater. 37 1511
    [29] Grimme S 2006 J. Comput. Chem. 27 1787
    [30] Hirth J P, Lothe J 1991 Theory of Dislocations (Florida, USA: Krieger Publishing Company)
    [31] Grönbeck H, Curioni A, Andreoni W 2000 J. Am. Chem. Soc. 122 3839
    [32] Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H, Sindoro M, Zhang H 2017 Chem. Rev. 117 6225
    [33] Lin Z, McCreary A, Briggs N, Subramanian S, Zhang K, Sun Y, Li X, Borys N J, Yuan H, Fullerton-Shirey S K, Chernikov A, Zhao H, McDonnell S, Lindenberg A M, Xiao K, LeRoy B J, Drndić M, Hwang J C M, Park J, Chhowalla M, Schaak R E, Javey A, Hersam M C, Robinson J, Terrones M 2016 2D Mater. 3 042001
    [34] McDonnell S J, Wallace R M 2016 Thin Solid Films 616 482
    [35] Liang T, Phillpot S R, Sinnott S B 2009 Phys. Rev. B 79 245110
    [36] Liang T, Phillpot S R, Sinnott S B 2012 Phys. Rev. B 85 199903
    [37] Stewart J A, Spearot D E 2013 Model. Simul. Mater. Sci. Eng. 21 045003
    [38] Sun H, Sirott E W, Mastandrea J, Gramling H M, Zhou Y, Poschmann M, Taylor H K, Ager J W, Chrzan D C 2018 Phys. Rev. Mater. 2 094004
    [39] Komsa H P, Krasheninnikov A V 2013 Phys. Rev. B 88 085318
    [40] Ebnonnasir A, Narayanan B, Kodambaka S, Ciobanu C V 2014 Appl. Phys. Lett. 105 031603
    [41] Koda D S, Bechstedt F, Marques M, Teles L K 2016 J. Phys. Chem. C 120 10895

  • [1] 丁莉洁, 张笑天, 郭欣宜, 薛阳, 林常青, 黄丹. SrSnO3作为透明导电氧化物的第一性原理研究. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221544
    [2] 杨顺杰, 李春梅, 周金萍. 磁无序及合金化效应影响Co2CrZ (Z = Ga, Si, Ge)合金相稳定性和弹性常数的第一性原理研究. 物理学报, 2022, 71(10): 106201. doi: 10.7498/aps.71.20212254
    [3] 邓旭良, 冀先飞, 王德君, 黄玲琴. 石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究. 物理学报, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [4] 舒衍涛, 张有为, 王顺. 基于过渡金属硫族化合物同质结的光电探测器. 物理学报, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [5] 尹媛, 李玲, 尹万健. 太阳能电池材料缺陷的理论与计算研究. 物理学报, 2020, 69(17): 177101. doi: 10.7498/aps.69.20200656
    [6] 胡前库, 秦双红, 吴庆华, 李丹丹, 张斌, 袁文凤, 王李波, 周爱国. 三元Nb系和Ta系硼碳化物稳定性和物理性能的第一性原理研究. 物理学报, 2020, 69(11): 116201. doi: 10.7498/aps.69.20200234
    [7] 范航, 何冠松, 杨志剑, 聂福德, 陈鹏万. 三氨基三硝基苯基高聚物粘结炸药热力学性质的理论计算研究. 物理学报, 2019, 68(10): 106201. doi: 10.7498/aps.68.20190075
    [8] 胡前库, 侯一鸣, 吴庆华, 秦双红, 王李波, 周爱国. 过渡金属硼碳化物TM3B3C和TM4B3C2稳定性和性能的理论计算. 物理学报, 2019, 68(9): 096201. doi: 10.7498/aps.68.20190158
    [9] 李卫胜, 周健, 王瀚宸, 汪树贤, 于志浩, 黎松林, 施毅, 王欣然. 二维半导体过渡金属硫化物的逻辑集成器件. 物理学报, 2017, 66(21): 218503. doi: 10.7498/aps.66.218503
    [10] 马爽, 乌仁图雅, 特古斯, 武晓霞, 管鹏飞, 那日苏. FeMnP1-xTx(T=Si,Ga,Ge)系列化合物机械性能的第一性原理研究. 物理学报, 2017, 66(12): 126301. doi: 10.7498/aps.66.126301
    [11] 仇巍, 张启鹏, 李秋, 许超宸, 郭建刚. 单层单晶石墨烯与柔性基底界面性能的实验研究. 物理学报, 2017, 66(16): 166801. doi: 10.7498/aps.66.166801
    [12] 张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈. 5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算. 物理学报, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [13] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算. 物理学报, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [14] 于冬琪, 张朝晖. 带状碳单层与石墨基底之间相互作用的第一性原理计算. 物理学报, 2011, 60(3): 036104. doi: 10.7498/aps.60.036104
    [15] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [16] 杨天兴, 成强, 许红斌, 王渊旭. 几种三元过渡金属碳化物弹性及电子结构的第一性原理研究. 物理学报, 2010, 59(7): 4919-4924. doi: 10.7498/aps.59.4919
    [17] 胡方, 明星, 范厚刚, 陈岗, 王春忠, 魏英进, 黄祖飞. 梯形化合物NaV2O4F电子结构的第一性原理研究. 物理学报, 2009, 58(2): 1173-1178. doi: 10.7498/aps.58.1173
    [18] 宋庆功, 王延峰, 宋庆龙, 康建海, 褚 勇. 插层化合物Ag1/4TiSe2电子结构的第一性原理研究. 物理学报, 2008, 57(12): 7827-7832. doi: 10.7498/aps.57.7827
    [19] 明 星, 范厚刚, 胡 方, 王春忠, 孟 醒, 黄祖飞, 陈 岗. 自旋-Peierls化合物GeCuO3电子结构的第一性原理研究. 物理学报, 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [20] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究. 物理学报, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
计量
  • 文章访问数:  3797
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-22
  • 修回日期:  2018-09-25
  • 刊出日期:  2018-11-05

过渡金属硫族化合物柔性基底体系的模型与应用

  • 1. 1. 北京应用物理与计算数学研究所, 北京 100094;
  • 2. 2. 北京应用物理与计算数学研究所邓稼先创新研究中心, 北京 100088;
  • 3. 3. 中物院高性能数值模拟软件中心, 北京 100088
  • 通信作者: 周愈之, zhou_yuzhi@iapcm.ac.cn
    基金项目: 国家自然科学基金(批准号:91730302)资助的课题.

摘要: 柔性基底体系是晶体外延生长领域于20世纪90年代提出的概念.其核心思想是利用超薄的基底,使其在外延生长时能同时与外延晶膜发生应变,以抵消二者之间的晶格失配,从而减少外延晶膜中的位错,提高晶膜的质量.但是人工制备性能优良的超薄基底往往需要较为复杂的工艺.另一方面,过渡金属硫族化合物由于其层状结构特性和层间较弱的范德瓦耳斯相互作用,是天然的柔性基底.本文介绍近几年来新发展的过渡金属硫族化合物柔性基底体系的模型及应用.以Au-MoS2作为柔性基底外延生长的原型,结合密度泛函理论、线性弹性理论以及位错理论构建模型,并根据计算结果解释了早先利用透射电子显微镜观测到的Au薄膜在MoS2上外延生长的相关实验现象.此外,本文还介绍了受到该理论模型启发的相关实验工作,特别是利用Au薄膜分离大面积、单层、高质量MoS2的技术.最后,讨论了在该领域内值得关注和进一步探索的理论问题.

English Abstract

参考文献 (1)

目录

    /

    返回文章
    返回