搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀土金属的弹性性质及其压力依赖性研究

黄承宁 刘倍雷 王越超 高兴誉 咸家伟 刘海风 宋海峰

引用本文:
Citation:

稀土金属的弹性性质及其压力依赖性研究

黄承宁, 刘倍雷, 王越超, 高兴誉, 咸家伟, 刘海风, 宋海峰

Elastic properties and theirpressure dependence of rare earth metals

HUANG Chengning, LIU Beilei, WANG Yuechao, GAO Xingyu, XIAN Jiawei, LIU Haifeng, SONG Haifeng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 稀土金属在工程技术领域具有重要应用, 同时因其与f电子相关的独特行为受到凝聚态物理的广泛关注. 本文结合第一性原理计算与数据汇编, 对稀土金属的弹性性质随原子序数变化开展分析, 并以Ce和Yb为例, 对高压0—15 GPa范围内的弹性演化进行研究讨论, 对比了不同f电子处理方法的模拟表现. 结果表明, 稀土金属随原子序数变化存在明显的延展性差异, 在压力作用下的相变处弹性性质会发生显著改变. 特别是, 在Ce的fcc同构相变和Yb的fcc-bcc相变中出现脆、延性转变. 这些与随原子序数或压力条件改变发生的成键特性变化密切相关. 此外, 研究发现, 将f电子作为芯层电子处理的模拟方法能够较好地描述稀土金属在常压下的弹性性质, 但在描述高压下的结构相变及弹性性质演化趋势时, 将f电子作为价电子并考虑电子关联效应修正的处理方法则更为有效. 本文数据集可在https://doi.org/10.57760/sciencedb.j00213.00150中访问获取.
    Rare earth metals are of significant importance in engineering and technological applications, and their unique f-electron-related behaviors have attracted widespread interest in condensed matter physics. In this work, we investigate the elastic properties of rare earth metals ranging from Ce to Yb by combining first-principles calculations with systematic data compilation. Taking Ce and Yb as representative cases, we investigate the evolution of their elastic properties under high-pressure conditions (0–15 GPa), and we systematically compare the simulation performances of different f-electron treatment approaches. The results indicate a significant difference in ductility between light and heavy rare earth metals under ambient pressure. Under pressure, the elastic properties of Ce and Yb undergo marked changes in phase transitions. Specifically, the B/G ratio, a key indicator of ductility, decreases from about 2.0 in light lanthanides to around 1.5 in heavy lanthanides, crossing the critical threshold of 1.75. Notably, during the fcc iso-structural phase transition in Ce and the fcc-bcc phase transition in Yb, a significant brittle-ductile transition is observed. These transitions are closely related to the bonding characteristics modulated by atomic number or pressure condition. For instance, as the atomic number increases, the Cauchy pressure (C12C44) decreases with the variation of s/d valence electrons, indicating an enhanced covalent bonding tendency. In addition, this study reveals that simulating f-electrons as core electrons can adequately describe the elastic properties and trends of rare earth metals under ambient pressure. However, when modeling high-pressure structural phase transitions and their related elastic evolution, the method of treating f-electrons as valence electrons and performing electron correlation correction shows better accuracy. The datasets presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.00150.
  • 图 1  稀土金属Ce-Yb的模量(实验数据取自文献[23, 24], 除本文计算外, 理论数据取自文献[16,21,22]) (a) 体模量; (b) 剪切模量

    Fig. 1.  Elastic modulus of rare earth metals (Ce-Yb) (Experimental data are taken from Refs. [23,24], and theoretical data are taken from Refs. [16,21,22], except for the computational results from this work): (a) Bulk modulus; (b) shear modulus.

    图 2  (a) 稀土金属体模量和剪切模量的比值B/G, 并与已有的实验[23,24]进行比较; (b) f-core方法计算获得s, d价电子填充数; (c) 柯西压力C12C44随原子序数变化; (d) 稀土金属的熔点[27]

    Fig. 2.  (a) Ratio of bulk modulus to shear modulus (B/G) for rare earth metals. Comparisons are made with the experimental results[23,24]. (b) The s- and d-valence electron occupation numbers calculated using the f-core method. (c) The variation of Cauchy pressure (C12C44) with the atomic number. (d) Melting points for rare-earth metals[27].

    图 3  (a) Ce体模量随压强的变化; (b) 剪切模量随压强的变化; (c) 纵波声速随压强的变化; (d) 横波声速随压强的变化. 并与已有的实验结果[1113,34]进行比较, 图中虚线是实验给出的Ce的γ-α相变压力点

    Fig. 3.  (a) Bulk modulus B for Ce as a function of pressure. (b) Shear modulus G as a function of pressure. (c) Longitudinal wave velocity CL as a function of pressure. (d) Transverse wave velocity CT as a function of pressure. Comparisons are made with existing experimental results [11-13,34]. The dashed line in the figure marks the experimentally reported γ-α phase transition pressure.

    图 4  (a) B/G随压强的变化关系, 并与已有的实验结果[1113,34]进行比较; (b) s价电子数随压强的变化关系; (c) d, f价电子数随压强变化关系; (d) 柯西压力C12C44随压强的变化关系

    Fig. 4.  (a) B/G ratio as a function of pressure. Comparisons with existing experimental results[1113,34] are provided. (b) The s-valence electron occupation as a function of pressure. (c) The d, f-valence electron occupation as a function of pressure. (d) Cauchy pressure (C12C44) as a function of pressure.

    图 5  Yb的fcc-bcc相焓差随压强的变化

    Fig. 5.  Enthalpy difference between fcc and bcc phase for Yb as a function of pressure.

    图 6  (a) Yb的体模量随压强的变化, 小图为相变压力点附近体模量随压强的变化; (b) 剪切模量随压强的变化; (c) 纵波声速随压强的变化; (d) 横波声速随压强的变化. 并与已有的实验结果[9]进行比较

    Fig. 6.  (a) Bulk modulus for Yb as a function of pressure, with the inset showing the bulk modulus variation near the phase transition pressure. (b) Shear modulus as a function of pressure. (c) Longitudinal wave velocity CL as a function of pressure. (d) Transverse wave velocity CT as a function of pressure. Comparisons with existing experimental results[9] are provided.

    图 7  (a) 对于Yb, B/G随压强的变化, 并与已有的实验结果[9]进行比较; (b) s价电子数随压强变化; (c) d价电子数随压强变化; (d) 柯西压力C12C44随压强的变化

    Fig. 7.  (a) B/G ratio for Yb as a function of pressure. Comparisons with existing experimental results[9] are provided. (b) The s-valence electron occupation as a function of pressure. (c) The d-valence electron occupation as a function of pressure. (d) Cauchy pressure (C12C44) as a function of pressure.

    表 1  实验与理论计算的镧系元素Ce-Yb弹性性质

    Table 1.  Calculated elastic constants, bulk modulus (B), shear modulus (G) and B/G for rare earth Ce-Yb.

      Method B/GPa G/GPa C11 C12 C44 C13 C33 B/G Ref.
    Cef-band39.8033.2463.2028.1050.901.19This Work
    GGA+OP, f-band40.89[16]
    PBE, f-core29.2313.7239.2924.2120.452.13This Work
    PBE, f-core34.62[21]
    GGA, f-core30.2115.8643.4623.5921.711.90[22]
    γ-CePBE+U27.2015.7640.5920.5221.331.73This Work
    Expt.14.8312.8624.110.219.41.15[29]
    PrPBE, f-band20.6418.7539.3011.3122.801.10This Work
    GGA+OP, f-band20.88[16]
    PBE, f-core31.6616.4544.8025.1023.201.92This Work
    GGA, f-core36.65[21]
    GGA, f-core34.5718.8360.7725.3617.417.8867.341.83[22]
    PBE+U24.2711.5835.2018.8014.602.09This Work
    Expt.28.8014.801.95[24]
    NdPBE, f-band18.914.9530.9012.9021.001.26This Work
    GGA+OP, f-band20.98[16]
    PBE, f-core33.918.5549.1026.2925.701.83This Work
    GGA, f-core39.12[21]
    GGA, f-core36.1220.7765.2425.8819.1117.7771.771.74[22]
    PBE+U28.5725.6546.9019.4138.901.11This Work
    Expt.31.816.31.95[24]
    PmPBE, f-band20.6714.8131.6015.2022.001.2This Work
    GGA+OP, f-band19.92[16]
    PBE, f-core35.6720.3752.4027.3128.201.75This Work
    GGA, f-core39.21[21]
    GGA, f-core37.9623.2170.3624.6321.0018.6277.171.64[22]
    PBE+U16.8010.9424.2013.1017.201.54This Work
    Expt.35.3716.702.12[23]
    SmPBE, f-band18.704.8718.1019.0018.503.84This Work
    GGA+OP, f-band19.91[16]
    PBE, f-core36.8121.7254.6027.9130.101.69This Work
    GGA, f-core38.94[21]
    GGA, f-core36.9119.6061.8121.2718.6424.5668.581.88[22]
    PBE+U12.107.3915.9010.2113.701.64This Work
    Expt.29.4612.682.32[23]
    EuPBE, f-band14.337.5116.6013.2017.702.32This Work
    PBE, f-core12.939.0717.6110.6016.801.43This Work
    GGA, f-core14.67[21]
    GGA, f-core PBE+U12.528.4016.4610.5516.341.49[22]
    Expt.12.207.5616.2010.2113.801.61This Work
     14.755.902.5[23]
    GdPBE, f-band30.5016.3142.7024.4024.001.87This Work
    GGA+OP, f-band28.99[16]
    GdPBE, f-core39.5424.1259.6029.5033.101.64This Work
    GGA, f-core36.74[21]
    GGA, f-core41.7322.1168.2621.0021.0130.0480.31.89[22]
    PBE+U31.6419.0647.1023.9126.601.66This Work
    Expt.38.4022.311.72[23]
    TbPBE, f-band24.3716.7636.5018.3025.201.45This Work
    GGA+OP, f-band30.15[16]
    PBE, f-core41.3725.1762.7030.7034.101.64This Work
    GGA, f-core36.28[21]
    GGA, f-core40.8722.7768.4320.0721.8528.5979.251.79[22]
    PBE+U32.9015.7046.1026.3121.402.09This Work
    Expt.39.9922.901.75[23]
    DyGGA+OP, f-band29.08[16]
    PBE, f-core41.2725.4862.8030.5034.601.62This Work
    GGA, f-core36.74[21]
    GGA, f-core42.1424.4870.9320.5323.9720.5328.751.72[22]
    Expt.38.5025.451.51[23]
    HoPBE, f-band29.0914.2635.9025.6927.502.04This Work
    GGA+OP, f-band29.88[16]
    PBE, f-core42.1426.1564.8030.8034.901.61This Work
    GGA, f-core38.20[21]
    GGA, f-core44.1226.2675.4022.3026.7429.6385.061.68[22]
    PBE+U14.637.0315.5014.1920.402.08This Work
    Expt.39.7526.731.49[23]
    ErPBE, f-band32.739.5134.4031.9026.003.46This Work
    GGA+OP, f-band29.95[16]
    PBE, f-core42.6027.7865.6031.1034.801.53This Work
    GGA, f-core40.12[21]
    GGA, f-core45.8228.6081.5424.2728.8528.3488.051.60[22]
    PBE+U29.4317.1335.7026.3037.501.72This Work
    Expt.41.1529.681.38[23]
    TmPBE, f-band20.7515.2147.708.869.023.8658.401.36This Work
    GGA+OP, f-band27.93[16]
    PBE, f-core42.9326.4667.0030.9034.201.62This Work
    GGA, f-core42.41[21]
    GGA, f-core48.2331.0288.4425.5830.2828.0494.211.58[22]
    PBE+U21.8110.9725.6019.9224.591.99This Work
    Expt.44.530.51.45[24]
    YbPBE, f-band16.6310.5520.1014.8924.101.58This Work
    PBE, f-core15.879.3518.6014.5022.301.69This Work
    GGA, f-core15.58[21]
    GGA, f-core16.3410.7223.2112.9117.441.52[22]
    PBE+U10.683.8217.6613.3320.752.79This Work
    Expt.13.139.91.33[24]
    下载: 导出CSV
  • [1]

    McMahan A K, Huscroft C, Scalettar R T, Pollock E L 1998 J. Comput. Aid Mol. Des. 5 131Google Scholar

    [2]

    Grimvall G 1999 Thermophysical Properties of Materials (Amsterdam: Elsevier).

    [3]

    Jia T T, Chen G, Zhang Y S 2017 Phys. Rev. B 95 155206Google Scholar

    [4]

    Li W G, Kou H B, Zhang X Y, Ma J Z, Li Y, Geng P J, Wu X Z, Chen L M, Fang D N 2019 Mech. Mater. 139 103194Google Scholar

    [5]

    Pugh S 1954 Philos. Mag. 45 823Google Scholar

    [6]

    Xu L, Li X, He Q, Yang J, Sun S L, Li J, Hu J B, Wu Q 2025 J. Appl. Phys. 137 015902Google Scholar

    [7]

    谢明宇, 李法新 2022 力学进展 52 33Google Scholar

    Xie M Y, Li F X 2022 Adv. Mech. 52 33Google Scholar

    [8]

    Kittel C 1996 Introduction to Solid State Physics (New York: Wiley

    [9]

    Boguslavskii Y Y, Goncharov V A, Il'ina G G 1989 J. Less-Common Met. 147 249Google Scholar

    [10]

    Jeong I K, Darling T W, Graf M J, Proffen T, Heffner R H, Lee Y, Vogt T, Jorgensen J D 2004 Phys. Rev. Lett. 92 105702Google Scholar

    [11]

    Decremps F, Antonangeli D, Amadon B, Schmerber G 2009 Phys. Rev. B 80 132103Google Scholar

    [12]

    Wang Z G, Bi Y, Xu L, Liu L 2014 Mater. Res. 1 026501

    [13]

    Lipp M J, Jackson D, Cynn H, Aracne C, Evans W J, Mcmahan A K 2008 Phys. Rev. Lett. 101 165703Google Scholar

    [14]

    Lipp M J, Jenei Z, Cynn H, Kono Y, Park C, Kenney-Benson C, Evans W J 2017 Nat. Commun. 8 1198Google Scholar

    [15]

    Xu L, Wang Z G, Li Z G, Li X H, Yao S L, Li J, Zhou X M, Yu Y Y, Hu J B, Wu Q 2021 Appl. Phys. Lett. 118 074102Google Scholar

    [16]

    Söderlind P, Turchi P E A, Landa A, Lordi V 2014 J. Phys. : Condens. Matter. 26 416001Google Scholar

    [17]

    Hill R 1952 Proc. Phys. Soc. A 65 349Google Scholar

    [18]

    Yang Z, Xian J W, Gao X Y, Tian F Y, Song H F 2024 J. Chem. Phys. 161 194101Google Scholar

    [19]

    Blöchl P E 1994 Phys. Rev. B Condens Matter. 50 17953Google Scholar

    [20]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [21]

    Delin A, Fast L, Johansson B, Eriksson O, Wills J M 1998 Phys. Rev. B 58 4345

    [22]

    Ouyang Y F, Tao X M, Zeng F J, Chen H M, Du Y, Feng Y P, He Y 2009 Physica B 404 2299Google Scholar

    [23]

    Seitz F, Turnbull D 1964 Solid State Physics: Advance in Research and Applications (New York: Academic press

    [24]

    Material Properties, https://material-properties.org [2025-03-19]

    [25]

    Pettifor D G 1992 Mater. Sci. Tech. 8 345Google Scholar

    [26]

    Eberhart M E, Jones T E 2012 Phys. Rev. B 86 134106Google Scholar

    [27]

    PubChem Kim S, Chen J, Cheng T, et al. 2025 update. Nucleic Acids Res. 2025;53(D1): D1516-D1525. https://pubchem.ncbi.nlm.nih.gov/ [2025-03-19]

    [28]

    Gurtin M E, Fried E, Anand L 2010 The Mechanics and Thermodynamics of Continua (Cambridge: Cambridge University Press

    [29]

    Stassis C, Gould T, McMasters O D, Gschneidner K A, Nicklow R M 1979 Phys. Rev. B 19 5746Google Scholar

    [30]

    Nikolaev A V, Tsvyashchenko A V 2012 Phys. -Usp. 55 657Google Scholar

    [31]

    Chen J L, Kaltsoyannis N 2022 J. Phys. Chem. C 126 11426Google Scholar

    [32]

    Eryigit S, Parlak C, Eryigit R 2022 J. Phys. : Condens. Matter 34 295402Google Scholar

    [33]

    Tran F, Karsai F, Blaha P 2014 Phys. Rev. B 89 155106Google Scholar

    [34]

    Voronov F F, Goncharova V A, Stal'gorova O V 1979 J. Exp. Theor. Phys. 49 687

    [35]

    Chesnut G N, Vohra Y K 1999 Phys. Rev. Lett. 82 1712Google Scholar

    [36]

    Morée J B, Amadon B 2018 Phys. Rev. B 98 205101Google Scholar

    [37]

    Satikunvar D D, Bhatt N K, Thakore B Y 2021 J. Appl. Phys. 129 035107Google Scholar

  • [1] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料预测. 物理学报, doi: 10.7498/aps.73.20241278
    [2] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, doi: 10.7498/aps.70.20201939
    [3] 吕常伟, 王臣菊, 顾建兵. 高温高压下立方氮化硼和六方氮化硼的结构、力学、热力学、电学以及光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20182030
    [4] 付现凯, 陈万骐, 姜钟生, 杨波, 赵骧, 左良. Ti3O5弹性、电子和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20190664
    [5] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, doi: 10.7498/aps.68.20191258
    [6] 王浩玉, 农智升, 王继杰, 朱景川. AlxCrFeNiTi系高熵合金成分和弹性性质关系. 物理学报, doi: 10.7498/aps.68.20181893
    [7] 胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤. Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究. 物理学报, doi: 10.7498/aps.66.057102
    [8] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究. 物理学报, doi: 10.7498/aps.65.126102
    [9] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算. 物理学报, doi: 10.7498/aps.63.186401
    [10] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 物理学报, doi: 10.7498/aps.62.046201
    [11] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.62.107402
    [12] 范开敏, 杨莉, 孙庆强, 代云雅, 彭述明, 龙兴贵, 周晓松, 祖小涛. 六角相ErAx (A=H, He)体系弹性性质的第一性原理研究. 物理学报, doi: 10.7498/aps.62.116201
    [13] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, doi: 10.7498/aps.62.087104
    [14] 王斌, 刘颖, 叶金文. 高压下TiC的弹性、电子结构及热力学性质的第一性原理计算. 物理学报, doi: 10.7498/aps.61.186501
    [15] 汝强, 胡社军, 赵灵智. LixFePO4(x=0.0, 0.75, 1.0)电子结构与弹性性质的第一性原理研究. 物理学报, doi: 10.7498/aps.60.036301
    [16] 陈海川, 杨利君. LiGaX2(X=S, Se, Te)的电子结构,光学和弹性性质的第一性原理计算. 物理学报, doi: 10.7498/aps.60.014207
    [17] 李晓凤, 刘中利, 彭卫民, 赵阿可. 高压下CaPo弹性性质和热力学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.60.076501
    [18] 侯榆青, 张小东, 姜振益. 第一性原理计算MAlH4(M=Na, K)的结构和弹性性质. 物理学报, doi: 10.7498/aps.59.5667
    [19] 杨天兴, 成强, 许红斌, 王渊旭. 几种三元过渡金属碳化物弹性及电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.59.4919
    [20] 周晶晶, 陈云贵, 吴朝玲, 庞立娟, 郑欣, 高涛. 钒基固溶体储氢材料弹性性质第一性原理研究. 物理学报, doi: 10.7498/aps.58.7044
计量
  • 文章访问数:  343
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-29
  • 修回日期:  2025-05-23
  • 上网日期:  2025-06-11

/

返回文章
返回