搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

芯片参数与控制波形对CZ门保真度影响的系统性研究

汪士 郑岩 侯杰 叶永金 季阳 吴永政

引用本文:
Citation:

芯片参数与控制波形对CZ门保真度影响的系统性研究

汪士, 郑岩, 侯杰, 叶永金, 季阳, 吴永政

Comprehensive study of the effects of chip parameters and control waveforms on the fidelity of CZ gate

WANG Shi, ZHENG Yan, HOU Jie, YE Yongjin, JI Yang, WU Yongzheng
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 高保真度双量子比特门对实现容错量子计算至关重要,是量子计算领域重点研究内容之一。量子门的保真度会受到量子芯片参数、控制波形等多种因素影响。本文系统地研究了芯片参数、控制波形、耦合器起始频率、比特频率等对CZ门保真度的影响,在此基础上进一步研究了门保真度对控制参数偏离的响应。在芯片设计方案层面,基于CBQ参数的量子芯片可以在更短的门操作时间实现更高保真度的CZ门。控制波形方面,三级傅里叶级数波相较方波和圆角梯形波在门错误率和门操作时间两方面均更为出色,更能满足高效实现高保真度量子门的要求。耦合器起始频率以及量子比特频率等因素对CZ门保真度的影响则相对较小,在很宽的频率范围内,总是可以通过优化控制波形参数实现高保真度的CZ门;而轻微的控制参数偏离则会导致门错误率显著上升。本研究对于厘清各因素对CZ门保真度的影响具有重要意义,可为超导量子芯片设计及高保真度CZ门实验实现提供理论与技术支撑,助力量子计算工程化发展。
    Effcient and high-fidelity two-qubit gates are crucial to achieving fault-tolerant quantum computing and are one of the key research topics in the field of quantum computing. The fidelity of quantum gates is affected by many factors, such as quantum chip parameters and control waveforms. In theory, the chip paramters and waveforms are precisely designed. However, in practice the actual chip parameters and waveforms may deviate from the theoretical values. It is necessary to systematically study the impact of chip parameters, control waveforms and other factors on the fidelity of two-qubit gates, and identify the magnitude and direction of the impact of each factor on the fidelity of quantum gates. Here, we systematically studies the effects of chip parameters, control waveforms, coupler start frequency, qubit frequency, etc., on the fidelity of CZ gates. On this basis, the response of gate fidelity to control parameters deviation is further studied. At the chip design level, quantum chips based on CBQ parameters can achieve higher-fidelity CZ gates in shorter gate operation time. In terms of controlling waveforms, threelevel Fourier series wave is superior to the square wave and rounded trapezoidal wave in terms of gate error rate and gate operation time, and can better meet the requirements for effcient implementation of high-fidelity quantum gates. Factors such as the coupler starting frequency and qubit frequency have relatively little effect on the fidelity of the CZ gate. In a wide frequency range, high-fidelity CZ gates can always be achieved by optimizing the control waveform parameters. It is important to point out that slight deviations in control parameters will lead to a significant increase in the gate error. This study is of great significance for clarifying the impact of various factors on the fidelity of the CZ gate. It can provide theoretical and technical support for the design of superconducting quantum chips and the realization of high-fidelity CZ gate, and promote the engineering development of quantum computing.
  • [1]

    Easttom C 2022 Modern Cryptography: Applied Mathematics for Encryption and Information Security (Cham: Springer International Publishing) pp397–407

    [2]

    Hossain Faruk M J, Tahora S, Tasnim M, Shahriar H, Sakib N 2022 2022 1st International Conference on AI in Cybersecurity Victoria, TX, USA, May 24-26, 2022 p1

    [3]

    Cavaliere F, Mattsson J, Smeets B 2020 Network Security 2020 9

    [4]

    Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S 2017 Nature 549 195

    [5]

    Wang Y, Liu J 2024 Rep. Prog. Phys. 87 116402

    [6]

    Lanyon B P, Whitfield J D, Gillett G G, Goggin M E, Almeida M P, Kassal I, Biamonte J D, Mohseni M, Powell B J, Barbieri M, Aspuru-Guzik A, White A G 2010 Nat. Chem. 2 106

    [7]

    Cao Y, Romero J, Olson J P, Degroote M, Johnson P D, Kieferová M, Kivlichan I D, Menke T, Peropadre B, Sawaya N P D, Sim S, Veis L, Aspuru-Guzik A 2019 Chem. Rev. 119 10856

    [8]

    Orús R, Mugel S, Lizaso E 2019 Rev. Phys. 4 100028

    [9]

    Herman D, Googin C, Liu X, Sun Y, Galda A, Safro I, Pistoia M, Alexeev Y 2023 Nat. Rev. Phys. 5 450

    [10]

    Egger D J, Gambella C, Marecek J, McFaddin S, Mevissen M, Raymond R, Simonetto A, Woerner S, Yndurain E 2020 IEEE Transactions on Quantum Engineering 1 1

    [11]

    Preskill J 2018 Quantum 2 79

    [12]

    Aharonov D, Ben-Or M 2008 Siam J Comput. 38 1207

    [13]

    Knill E, Laflamme R, Zurek W H 1998 Science 279 342

    [14]

    Krinner S, Lacroix N, Remm A, Di Paolo A, Genois E, Leroux C, Hellings C, Lazar S, Swiadek F, Herrmann J, Norris G J, Andersen C K, Müller M, Blais A, Eichler C, Wallraff A 2022 Nature 605 669

    [15]

    Zhao Y, Ye Y, Huang H L, Zhang Y, Wu D, Guan H, Zhu Q, Wei Z, He T, Cao S, Chen F, Chung T H, Deng H, Fan D, Gong M, Guo C, Guo S, Han L, Li N, Li S, Li Y, Liang F, Lin J, Qian H, Rong H, Su H, Sun L, Wang S, Wu Y, Xu Y, Ying C, Yu J, Zha C, Zhang K, Huo Y H, Lu C Y, Peng C Z, Zhu X, Pan J W 2022 Phys. Rev. Lett. 129 030501

    [16]

    Google Quantum AI 2023 Nature 614 676

    [17]

    Gupta R S, Sundaresan N, Alexander T, Wood C J, Merkel S T, Healy M B, Hillenbrand M, JochymO’Connor T, Wootton J R, Yoder T J, Cross A W, Takita M, Brown B J 2024 Nature 625 259

    [18]

    Brock B L, Singh S, Eickbusch A, Sivak V V, Ding A Z, Frunzio L, Girvin S M, Devoret M H 2025 Nature 641 612

    [19]

    Babbush R, McClean J R, Newman M, Gidney C, Boixo S, Neven H 2021 PRX Quantum 2 010103

    [20]

    Litinski D 2019 Quantum 3 128

    [21]

    Fowler A G, Mariantoni M, Martinis J M, Cleland A N 2012 Phys. Rev. A 86 032324

    [22]

    Tomita Y, Svore K M 2014 Phys. Rev. A 90 062320

    [23]

    O’ Brien T E, Tarasinski B, DiCarlo L 2017 npj Quantum Inf. 3 39

    [24]

    Raussendorf R, Harrington J 2007 Phys. Rev. Lett. 98 190504

    [25]

    Gao D, Fan D, Zha C, Bei J, Cai G, Cai J, Cao S, Chen F, Chen J, Chen K, Chen X, Chen X, Chen Z, Chen Z, Chen Z, Chu W, Deng H, Deng Z, Ding P, Ding X, Ding Z, Dong S, Dong Y, Fan B, Fu Y, Gao S, Ge L, Gong M, Gui J, Guo C, Guo S, Guo X, Han L, He T, Hong L, Hu Y, Huang H L, Huo Y H, Jiang T, Jiang Z, Jin H, Leng Y, Li D, Li D, Li F, Li J, Li J, Li J, Li J, Li N, Li S, Li W, Li Y, Li Y, Liang F, Liang X, Liao N, Lin J, Lin W, Liu D, Liu H, Liu M, Liu X, Liu X, Liu Y, Lou H, Ma Y, Meng L, Mou H, Nan K, Nie B, Nie M, Ning J, Niu L, Peng W, Qian H, Rong H, Rong T, Shen H, Shen Q, Su H, Su F, Sun C, Sun L, Sun T, Sun Y, Tan Y, Tan J, Tang L, Tu W, Wan C, Wang J, Wang B, Wang C, Wang C, Wang C, Wang J, Wang L, Wang R, Wang S, Wang X, Wang X, Wang X, Wang Y, Wei Z, Wei J, Wu D, Wu G, Wu J, Wu S, Wu Y, Xie S, Xin L, Xu Y, Xue C, Yan K, Yang W, Yang X, Yang Y, Ye Y, Ye Z, Ying C, Yu J, Yu Q, Yu W, Zeng X, Zhan S, Zhang F, Zhang H, Zhang K, Zhang P, Zhang W, Zhang Y, Zhang Y, Zhang L, Zhao G, Zhao P, Zhao X, Zhao X, Zhao Y, Zhao Z, Zheng L, Zhou F, Zhou L, Zhou N, Zhou N, Zhou S, Zhou S, Zhou Z, Zhu C, Zhu Q, Zou G, Zou H, Zhang Q, Lu C Y, Peng C Z, Zhu X, Pan J W 2025 Phys. Rev. Lett. 134 090601

    [26]

    Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, Oliver W D 2019 Appl. Phys. Rev. 6 021318

    [27]

    DiCarlo L, Chow J M, Gambetta J M, Bishop L S, Johnson B R, Schuster D I, Majer J, Blais A, Frunzio L, Girvin S M, Schoelkopf R J 2009 Nature 460 240

    [28]

    Dewes A, Ong F R, Schmitt V, Lauro R, Boulant N, Bertet P, Vion D, Esteve D 2012 Phys. Rev. Lett. 108 057002

    [29]

    Zhao P, Xu P, Lan D, Chu J, Tan X, Yu H, Yu Y 2020 Phys. Rev. Lett. 125 200503

    [30]

    Barends R, Quintana C M, Petukhov A G, Chen Y, Kafri D, Kechedzhi K, Collins R, Naaman O, Boixo S, Arute F, Arya K, Buell D, Burkett B, Chen Z, Chiaro B, Dunsworth A, Foxen B, Fowler A, Gidney C, Giustina M, Graff R, Huang T, Jeffrey E, Kelly J, Klimov P V, Kostritsa F, Landhuis D, Lucero E, McEwen M, Megrant A, Mi X, Mutus J, Neeley M, Neill C, Ostby E, Roushan P, Sank D, Satzinger K J, Vainsencher A, White T, Yao J, Yeh P, Zalcman A, Neven H, Smelyanskiy V N, Martinis J M 2019 Phys. Rev. Lett. 123 210501

    [31]

    Chen Y, Neill C, Roushan P, Leung N, Fang M, Barends R, Kelly J, Campbell B, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Megrant A, Mutus J Y, O’Malley P J J, Quintana C M, Sank D, Vainsencher A, Wenner J, White T C, Geller M R, Cleland A N, Martinis J M 2014 Phys. Rev. Lett. 113 220502

    [32]

    Foxen B, Neill C, Dunsworth A, Roushan P, Chiaro B, Megrant A, Kelly J, Chen Z, Satzinger K, Barends R, Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Boixo S, Buell D, Burkett B, Chen Y, Collins R, Farhi E, Fowler A, Gidney C, Giustina M, Graff R, Harrigan M, Huang T, Isakov S V, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Klimov P, Korotkov A, Kostritsa F, Landhuis D, Lucero E, McClean J, McEwen M, Mi X, Mohseni M, Mutus J Y, Naaman O, Neeley M, Niu M, Petukhov A, Quintana C, Rubin N, Sank D, Smelyanskiy V, Vainsencher A, White T C, Yao Z, Yeh P, Zalcman A, Neven H, Martinis J M 2020 Phys. Rev. Lett. 125 120504

    [33]

    Yan F, Krantz P, Sung Y, Kjaergaard M, Campbell D L, Orlando T P, Gustavsson S, Oliver W D 2018 Phys. Rev. Appl. 10 054062

    [34]

    Li X, Cai T, Yan H, Wang Z, Pan X, Ma Y, Cai W, Han J, Hua Z, Han X, Wu Y, Zhang H, Wang H, Song Y, Duan L, Sun L 2020 Phys. Rev. Appl. 14 024070

    [35]

    Sete E A, Chen A Q, Manenti R, Kulshreshtha S, Poletto S 2021 Phys. Rev. Appl. 15 064063

    [36]

    Setiawan F, Groszkowski P, Clerk A A 2023 Phys. Rev. Appl. 19 034071

    [37]

    Møller D, Madsen L B, Mølmer K 2008 Phys. Rev. Lett. 100 170504

    [38]

    Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 449 443

    [39]

    Chow J M, Gambetta J M, Cross A W, Merkel S T, Rigetti C, Steffen M 2013 New J. Phys. 15 115012

    [40]

    Rigetti C, Devoret M 2010 Phys. Rev. B 81 134507

    [41]

    Poletto S, Gambetta J M, Merkel S T, Smolin J A, Chow J M, Córcoles A D, Keefe G A, Rothwell M B, Rozen J R, Abraham D W, Rigetti C, Steffen M 2012 Phys. Rev. Lett. 109 240505

    [42]

    Caldwell S A, Didier N, Ryan C A, Sete E A, Hudson A, Karalekas P, Manenti R, da Silva M P, Sinclair R, Acala E, Alidoust N, Angeles J, Bestwick A, Block M, Bloom B, Bradley A, Bui C, Capelluto L, Chilcott R, Cordova J, Crossman G, Curtis M, Deshpande S, Bouayadi T E, Girshovich D, Hong S, Kuang K, Lenihan M, Manning T, Marchenkov A, Marshall J, Maydra R, Mohan Y, O’Brien W, Osborn C, Otterbach J, Papageorge A, Paquette J P, Pelstring M, Polloreno A, Prawiroatmodjo G, Rawat V, Reagor M, Renzas R, Rubin N, Russell D, Rust M, Scarabelli D, Scheer M, Selvanayagam M, Smith R, Staley A, Suska M, Tezak N, Thompson D C, To T W, Vahidpour M, Vodrahalli N, Whyland T, Yadav K, Zeng W, Rigetti C 2018 Phys. Rev. Appl. 10 034050

    [43]

    Paik H, Mezzacapo A, Sandberg M, McClure D T, Abdo B, Córcoles A D, Dial O, Bogorin D F, Plourde B L T, Steffen M, Cross A W, Gambetta J M, Chow J M 2016 Phys. Rev. Lett. 117 250502

    [44]

    Pedersen L H, Møller N M, Mølmer K 2007 Phys. Lett. A 367 47

    [45]

    Wales D J, Doye J P K 1997 J. Phys. Chem. A 101 5111

    [46]

    Chu J, Yan F 2021 Phys. Rev. Appl. 16 054020

  • [1] 郭牧城, 汪福东, 胡肇高, 任苗苗, 孙伟业, 肖婉婷, 刘书萍, 钟满金. 微纳尺度稀土掺杂晶体的量子相干性能及其应用研究进展. 物理学报, doi: 10.7498/aps.72.20222166
    [2] 王晨旭, 贺冉, 李睿睿, 陈炎, 房鼎, 崔金明, 黄运锋, 李传锋, 郭光灿. 量子计算与量子模拟中离子阱结构研究进展. 物理学报, doi: 10.7498/aps.71.20220224
    [3] 周宗权. 量子存储式量子计算机与无噪声光子回波. 物理学报, doi: 10.7498/aps.71.20212245
    [4] 王宁, 王保传, 郭国平. 硅基半导体量子计算研究进展. 物理学报, doi: 10.7498/aps.71.20221900
    [5] 张结印, 高飞, 张建军. 硅和锗量子计算材料研究进展. 物理学报, doi: 10.7498/aps.70.20211492
    [6] 张诗豪, 张向东, 李绿周. 基于测量的量子计算研究进展. 物理学报, doi: 10.7498/aps.70.20210923
    [7] 姚洪斌, 蒋相站, 曹长虹, 李文亮. HD+分子的强场光解离动力学及其量子调控的理论研究. 物理学报, doi: 10.7498/aps.68.20190400
    [8] 范桁. 量子计算与量子模拟. 物理学报, doi: 10.7498/aps.67.20180710
    [9] 王文彬, 朱银燕, 殷立峰, 沈健. 复杂氧化物中电子相分离的量子调控. 物理学报, doi: 10.7498/aps.67.20182007
    [10] 贾芳, 刘寸金, 胡银泉, 范洪义. 量子隐形传态保真度的新公式及应用. 物理学报, doi: 10.7498/aps.65.220302
    [11] 杨增强, 张力达. 红外激光载波包络相位对氦原子的极紫外光(XUV)吸收谱的量子调控研究. 物理学报, doi: 10.7498/aps.64.133203
    [12] 杨光, 廉保旺, 聂敏. 振幅阻尼信道量子隐形传态保真度恢复机理. 物理学报, doi: 10.7498/aps.64.010303
    [13] 姚洪斌, 李文亮, 张季, 彭敏. K2分子在强激光场下的量子调控:缀饰态选择性分布. 物理学报, doi: 10.7498/aps.63.178201
    [14] 聂敏, 张琳, 刘晓慧. 量子纠缠信令网Poisson生存模型及保真度分析. 物理学报, doi: 10.7498/aps.62.230303
    [15] 赵建辉. 应用约化密度保真度确定自旋为1的一维量子 Blume-Capel模型的基态相图. 物理学报, doi: 10.7498/aps.61.220501
    [16] 潘长宁, 方见树, 彭小芳, 廖湘萍, 方卯发. 耗散系统中实现原子态量子隐形传态的保真度. 物理学报, doi: 10.7498/aps.60.090303
    [17] 叶 宾, 须文波, 顾斌杰. 量子Harper模型的量子计算鲁棒性与耗散退相干. 物理学报, doi: 10.7498/aps.57.689
    [18] 夏云杰, 王光辉, 杜少将. 双模最小关联混合态作为量子信道实现量子隐形传态的保真度. 物理学报, doi: 10.7498/aps.56.4331
    [19] 张登玉, 郭 萍, 高 峰. 强热辐射环境中两能级原子量子态保真度. 物理学报, doi: 10.7498/aps.56.1906
    [20] 叶 宾, 谷瑞军, 须文波. 周期驱动的Harper模型的量子计算鲁棒性与量子混沌. 物理学报, doi: 10.7498/aps.56.3709
计量
  • 文章访问数:  59
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-09
  • 修回日期:  2025-06-09
  • 上网日期:  2025-06-11

/

返回文章
返回