搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子隐形传态保真度的新公式及应用

贾芳 刘寸金 胡银泉 范洪义

引用本文:
Citation:

量子隐形传态保真度的新公式及应用

贾芳, 刘寸金, 胡银泉, 范洪义

New formula for calculating the fidelity of teleportation and its applications

Jia Fang, Liu Cun-Jin, Hu Yin-Quan, Fan Hong-Yi
PDF
导出引用
  • 基于传统的Kimble-Braunstein量子隐形传态方案,利用纠缠态表象方法导出了平均意义下输出量子态的密度算符表示输出态算符与输入态、纠缠源的特征函数的关系,以及输出态特征函数与以上特征函数的简洁关系.基于此,对于任意的双模纠缠源,进一步推导了传输相干态的保真度公式它仅仅表示成纠缠源的Q函数的一个简洁积分.这为保真度计算提供了一条方便有效的途径.作为应用,我们考察了包括高斯与非高斯纠缠态作为纠缠源实现相干态传输的保真度.
    Quantum teleportation plays an important role in quantum information science. In order to obtain the effect of quantum teleportation of a quantum state by using an entangled resource, the fidelity of teleporting the quantum state should be calculated. Braunstein and Kimble[Phys. Rev. Lett. 80 869 (1998)] derived a formula of calculating the fidelity of quantum teleportation for Gaussian entangled resource and any input state to be teleported. Then, the point is how to calculate the quantum teleportation fidelity for any entangled resource. In this paper, werealize this purpose by using the entangled state representation. First, we derive the Weyl expansion of any density operator by using the completeness relation between coherent state and P-representation. Then using the orthogonal property of entangled state representation and the traditional Kimble-Braunstein scheme of quantum teleportation, we further derive the mean density operator of the output state, which means that we establish the relation between the output density operator and the characteristic functions of the input state to be teleported and the entangled resources. The characteristic function of the output state is also derived which is in the concise form relating these two characteristic functions above. Then we further obtain a new formula for calculating the quantum teleportation fidelity for the coherent state input and any two-mode entangled resource. It is shown that the fidelity of teleportation can be easily calculated when the Q-function of the normally ordering form of entangled resource is known. This is a convenient way of obtaining the fidelity of teleportation. As its applications, some Gaussian and non-Gaussian entangled states are examined to teleport the coherent state, whose results are correct.
      通信作者: 贾芳, jenshier@126.com
    • 基金项目: 国家自然科学基金(批准号:11664017,11264018,11464018)、江西省自然科学基金(批准号:20151BAB212006)、江西省学位与研究生教育教学改革研究项目(批准号:JXYJG-2013-027)和江西省教育厅科技项目(批准号:GJJ14274,GJJ14276)资助的课题.
      Corresponding author: Jia Fang, jenshier@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11664017, 11264018, 11464018), the Natural Science Foundation of Jiangxi Province of China (Grant No. 20151BAB212006), the Academic Degree and Postgraduate Education Foundation of Jiangxi Province of China (Grant No. JXYJG-2013-027), and the Education Department of Jiangxi Province of China (Grant Nos. GJJ14274, GJJ14276).
    [1]

    Bouwmeester D, Ekert A K, Zeilinger A 2000The Physics of Quantum Information (Berlin:Springer)

    [2]

    Cochrane P T, Ralph T C, Mibum G J 2002Phys. Rev. A 65 062306

    [3]

    Cochrane P T, Ralph T C 2003Phys. Rev. A 67 22313

    [4]

    Parigi V, Zavatta A, Kim M S, Bellini M 2007Science 317 1890

    [5]

    Hu L Y, Zhang Z M 2012J. Opt. Soc. Am. B 29 529

    [6]

    Hu L Y, Jia F, Zhang Z M 2012J. Opt. Soc. Am. B 29 1456

    [7]

    Hu L Y, Zhang Z M 2013J. Opt. Soc. Am. B 30 518

    [8]

    Wang S, Hou L L, Chen X F, Xu X F 2015Phys. Rev. A 91 063832

    [9]

    Zhang H L, Hu Y Q, Jia F, Hu L Y 2014Int. J. Theor. Phys. 53 2091

    [10]

    Braunstein S L, Kimble H J 1998Phys. Rev. Lett. 80 869

    [11]

    Hu L Y, Liao Z Y, Ma S L, Zubairy M S 2016Phys. Rev. A 93 033807

    [12]

    Scully M O, Zubairy M S 1997Quantum Optics (Cambridge:Cambridge University Press)

    [13]

    Fan H Y 2002Phys. Lett. A 294 253

    [14]

    Jia F, Xu X X, Liu C J, Huang J H, Hu L Y, Fan H Y 2014Acta Phys. Sin. 63 220301(in Chinese)[贾芳, 徐学翔, 刘寸金, 黄接辉, 胡利云, 范洪义2014物理学报63 220301]

    [15]

    Fan H Y 1997Representation and Transformation Theory in Quantum Mechanics (Shanghai:Shanghai Scientific and Technical Publisher) (in Chinese) p27[范洪义1997量子力学表象与变换论——狄拉克符号法进展(上海:上海科技出版社) p27]

    [16]

    Marian P, Marian T A 2006Phys. Rev. A 74 042306

    [17]

    Puri R R 2001Mathematical Methods of Quantum Optics (Berlin:Springer-Verlag) (Appendix A)

    [18]

    Hu L Y, Fan H Y, Zhang Z M 2013Chin. Phys. B 22 034202

    [19]

    Xu X X, Hu L Y, Fan H Y 2009Mod. Phys. Lett. A 24 2623

  • [1]

    Bouwmeester D, Ekert A K, Zeilinger A 2000The Physics of Quantum Information (Berlin:Springer)

    [2]

    Cochrane P T, Ralph T C, Mibum G J 2002Phys. Rev. A 65 062306

    [3]

    Cochrane P T, Ralph T C 2003Phys. Rev. A 67 22313

    [4]

    Parigi V, Zavatta A, Kim M S, Bellini M 2007Science 317 1890

    [5]

    Hu L Y, Zhang Z M 2012J. Opt. Soc. Am. B 29 529

    [6]

    Hu L Y, Jia F, Zhang Z M 2012J. Opt. Soc. Am. B 29 1456

    [7]

    Hu L Y, Zhang Z M 2013J. Opt. Soc. Am. B 30 518

    [8]

    Wang S, Hou L L, Chen X F, Xu X F 2015Phys. Rev. A 91 063832

    [9]

    Zhang H L, Hu Y Q, Jia F, Hu L Y 2014Int. J. Theor. Phys. 53 2091

    [10]

    Braunstein S L, Kimble H J 1998Phys. Rev. Lett. 80 869

    [11]

    Hu L Y, Liao Z Y, Ma S L, Zubairy M S 2016Phys. Rev. A 93 033807

    [12]

    Scully M O, Zubairy M S 1997Quantum Optics (Cambridge:Cambridge University Press)

    [13]

    Fan H Y 2002Phys. Lett. A 294 253

    [14]

    Jia F, Xu X X, Liu C J, Huang J H, Hu L Y, Fan H Y 2014Acta Phys. Sin. 63 220301(in Chinese)[贾芳, 徐学翔, 刘寸金, 黄接辉, 胡利云, 范洪义2014物理学报63 220301]

    [15]

    Fan H Y 1997Representation and Transformation Theory in Quantum Mechanics (Shanghai:Shanghai Scientific and Technical Publisher) (in Chinese) p27[范洪义1997量子力学表象与变换论——狄拉克符号法进展(上海:上海科技出版社) p27]

    [16]

    Marian P, Marian T A 2006Phys. Rev. A 74 042306

    [17]

    Puri R R 2001Mathematical Methods of Quantum Optics (Berlin:Springer-Verlag) (Appendix A)

    [18]

    Hu L Y, Fan H Y, Zhang Z M 2013Chin. Phys. B 22 034202

    [19]

    Xu X X, Hu L Y, Fan H Y 2009Mod. Phys. Lett. A 24 2623

  • [1] 文镇南, 易有根, 徐效文, 郭迎. 无噪线性放大的连续变量量子隐形传态. 物理学报, 2022, 71(13): 130307. doi: 10.7498/aps.71.20212341
    [2] 周瑶瑶, 刘艳红, 闫智辉, 贾晓军. 多功能量子远程传态网络. 物理学报, 2021, 70(10): 104203. doi: 10.7498/aps.70.20201749
    [3] 武莹, 李锦芳, 刘金明. 基于部分测量增强量子隐形传态过程的量子Fisher信息. 物理学报, 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [4] 杨光, 廉保旺, 聂敏. 振幅阻尼信道量子隐形传态保真度恢复机理. 物理学报, 2015, 64(1): 010303. doi: 10.7498/aps.64.010303
    [5] 郗玉兴, 单传家, 黄燕霞. 带有三体相互作用的XXZ自旋链模型的隐形传态. 物理学报, 2014, 63(11): 110305. doi: 10.7498/aps.63.110305
    [6] 秦猛, 李延标, 白忠, 王晓. 不同方向Dzyaloshinskii-Moriya相互作用和磁场对自旋系统纠缠和保真度退相干的影响. 物理学报, 2014, 63(11): 110302. doi: 10.7498/aps.63.110302
    [7] 刘世右, 郑凯敏, 贾芳, 胡利云, 谢芳森. 单-双模组合压缩热态的纠缠性质及在量子隐形传态中的应用. 物理学报, 2014, 63(14): 140302. doi: 10.7498/aps.63.140302
    [8] 张沛, 周小清, 李智伟. 基于量子隐形传态的无线通信网络身份认证方案. 物理学报, 2014, 63(13): 130301. doi: 10.7498/aps.63.130301
    [9] 周青春, 狄尊燕. 声子对隧穿量子点分子辐射场系统量子相位的影响. 物理学报, 2013, 62(13): 134206. doi: 10.7498/aps.62.134206
    [10] 张琳, 聂敏, 刘晓慧. 有噪量子信道生存函数研究及其仿真. 物理学报, 2013, 62(15): 150301. doi: 10.7498/aps.62.150301
    [11] 聂敏, 张琳, 刘晓慧. 量子纠缠信令网Poisson生存模型及保真度分析. 物理学报, 2013, 62(23): 230303. doi: 10.7498/aps.62.230303
    [12] 乔盼盼, 艾合买提·阿不力孜, 蔡江涛, 路俊哲, 麦麦提依明·吐孙, 日比古·买买提明. 利用热平衡态超导电荷量子比特实现量子隐形传态. 物理学报, 2012, 61(24): 240303. doi: 10.7498/aps.61.240303
    [13] 赵建辉. 应用约化密度保真度确定自旋为1的一维量子 Blume-Capel模型的基态相图 . 物理学报, 2012, 61(22): 220501. doi: 10.7498/aps.61.220501
    [14] 何锐, Bing He. 量子隐形传态的新方案. 物理学报, 2011, 60(6): 060302. doi: 10.7498/aps.60.060302
    [15] 吕菁芬, 马善钧. 光子扣除(增加)压缩真空态与压缩猫态的保真度. 物理学报, 2011, 60(8): 080301. doi: 10.7498/aps.60.080301
    [16] 潘长宁, 方见树, 彭小芳, 廖湘萍, 方卯发. 耗散系统中实现原子态量子隐形传态的保真度. 物理学报, 2011, 60(9): 090303. doi: 10.7498/aps.60.090303
    [17] 周小清, 邬云文. 利用三粒子纠缠态建立量子隐形传态网络的探讨. 物理学报, 2007, 56(4): 1881-1887. doi: 10.7498/aps.56.1881
    [18] 张登玉, 郭 萍, 高 峰. 强热辐射环境中两能级原子量子态保真度. 物理学报, 2007, 56(4): 1906-1910. doi: 10.7498/aps.56.1906
    [19] 夏云杰, 王光辉, 杜少将. 双模最小关联混合态作为量子信道实现量子隐形传态的保真度. 物理学报, 2007, 56(8): 4331-4336. doi: 10.7498/aps.56.4331
    [20] 张 茜, 李福利, 李宏荣. 基于双模压缩信道的双模高斯态量子隐形传态. 物理学报, 2006, 55(5): 2275-2280. doi: 10.7498/aps.55.2275
计量
  • 文章访问数:  4659
  • PDF下载量:  339
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-14
  • 修回日期:  2016-08-10
  • 刊出日期:  2016-11-05

量子隐形传态保真度的新公式及应用

  • 1. 中国科学技术大学材料化学与工程系, 合肥 230026;
  • 2. 江西师范大学, 光电子通信重点实验室, 南昌 330022;
  • 3. 江西师范大学量子科学与技术中心, 南昌 330022
  • 通信作者: 贾芳, jenshier@126.com
    基金项目: 国家自然科学基金(批准号:11664017,11264018,11464018)、江西省自然科学基金(批准号:20151BAB212006)、江西省学位与研究生教育教学改革研究项目(批准号:JXYJG-2013-027)和江西省教育厅科技项目(批准号:GJJ14274,GJJ14276)资助的课题.

摘要: 基于传统的Kimble-Braunstein量子隐形传态方案,利用纠缠态表象方法导出了平均意义下输出量子态的密度算符表示输出态算符与输入态、纠缠源的特征函数的关系,以及输出态特征函数与以上特征函数的简洁关系.基于此,对于任意的双模纠缠源,进一步推导了传输相干态的保真度公式它仅仅表示成纠缠源的Q函数的一个简洁积分.这为保真度计算提供了一条方便有效的途径.作为应用,我们考察了包括高斯与非高斯纠缠态作为纠缠源实现相干态传输的保真度.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回