-
通过求解系统的Milburn方程,研究了包含Dzyaloshinskii-Moriya相互作用的自旋链系统中纠缠和保真度的动力学演化特性,讨论了不同方向Dzyaloshinskii-Moriya相互作用、不同方向均匀和非均匀磁场、不同初始态对纠缠以及保真度退相干的影响. 研究发现,非均匀磁场的引入能够抑制纠缠退相干的发生,初始态的选择对系统纠缠状态的影响很大,可以通过调制Dzyaloshinskii-Moriya相互作用的方向来获得所需纠缠和较高的保真度. 研究还发现,退相干条件下,无论是均匀还是非均匀磁场对于保真度的提高并不明显. 纠缠和保真度随初始态角度的变化具有周期性,可以根据需要来选取不同系统中的最优初始态.
-
关键词:
- 内禀退相干 /
- 纠缠 /
- 不同方向Dzyaloshinskii-Moriya相互作用 /
- 保真度
Using the Milburn equation, we have studied the properties of the entanglement and fidelity dynamics in a spin system with different Dzyaloshinskii-Moriya interaction and magnetic field in detail. Effects of different Dzyaloshinskii-Moriya interaction, different magnetic fields, and the initial states on the entanglement and fidelity are discussed. Results show that entanglement decoherence can be suppressed by inhomogeneous magnetic fields. Initial state affects greatly the entanglement, and a proper entanglement can be obtained by adjusting the directions of Dzyaloshinskii-Moriya interaction. For a particular initial state, an optimal fidelity is obtained by changing the direction of the Dzyaloshinskii-Moriya interaction. Moreover, no matter how homogeneous or inhomogeneous the magnetic fields are, they cannot enhance the fidelity. The dependence of entanglement and fidelity on the angle of initial state shows periodicity. Hence we can select an optimal initial state for a specific condition according to requirement.-
Keywords:
- intrinsic decoherence /
- entanglement /
- different Dzyaloshinskii-Moriya interaction /
- fidelity
[1] Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777
[2] Mattle K, Weinfurter H, Kwiat P G, Zeilinger A 1996 Phys. Rev. Lett. 76 4656-4659
[3] Schumacher B 1995 Phys. Rev. A 51 2738
[4] Kim Y H, Kulik S P, Shih Y 2001 Phys. Rev. Lett. 86 1370
[5] Ekert A K 1991 Phys. Rev. Lett. 67 661
[6] Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S S 1996 Phys. Rev. Lett. 77 2818
[7] Verstraete F, Martin-Delgado M A, Cirac J I 2004 Phys. Rev. Lett. 92 087201
[8] Zhang G F, Li S S 2005 Phys. Rev. A 72 034302
[9] Xi X Q, Chen W X, Liu Q, Yue R H 2006 Acta Phys. Sin. 55 3026 (in Chinese)[惠小强, 陈文学, 刘起, 岳瑞宏 2006 物理学报 55 3026]
[10] Shan C J, Chen W W, liuT K, Huang Y X, Li H 2008 Acta Phys. Sin. 57 2687 (in Chinese)[单传家, 程维文, 刘堂昆, 黄燕霞, 李宏 2008 物理学报 57 2687]
[11] Zhang G F 2007 Phys. Rev. A 75 034304
[12] Kheirandish F, Akhtarshenas S J, Mohammadi H 2008 Phys. Rev. A 77 042309
[13] Derzhko O, Richter J 1999 Phys. Rev. B 59 100
[14] Li Y C, Li S S 2009 Phys. Rev. A 79 032338
[15] Qin M, Bai Z, Li Y B, Lin S J 2011 Opt. Commun. 284 3149
[16] Li D C, Cao Z L 2008 Eur. Phys. J. D 50 207
[17] Li D C, Wang X P, Cao Z L 2008 J. Phys. 20 32522
[18] Jiang C L, Liu X J, Liu M W, Wang Y H, Peng Z H 2012 Acta Phys. Sin. 61 170302 (in Chinese) [姜春蕾, 刘晓娟, 刘明伟, 王艳辉, 彭朝晖 2012 物理学报 61 170302]
[19] Mohammadia H, Akhtarshenas S J, Kheirandish F 2011 Eur. Phys. J. D 62 439
[20] Xu X B, Liu J M, Yu P F 2008 Chin. Phys. B 17 0456
[21] Milburn G J 1991 Phys. Rev. A 44 5401
[22] Wootters W K 1998 Phys. Rev. Lett. 80 2245
-
[1] Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777
[2] Mattle K, Weinfurter H, Kwiat P G, Zeilinger A 1996 Phys. Rev. Lett. 76 4656-4659
[3] Schumacher B 1995 Phys. Rev. A 51 2738
[4] Kim Y H, Kulik S P, Shih Y 2001 Phys. Rev. Lett. 86 1370
[5] Ekert A K 1991 Phys. Rev. Lett. 67 661
[6] Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S S 1996 Phys. Rev. Lett. 77 2818
[7] Verstraete F, Martin-Delgado M A, Cirac J I 2004 Phys. Rev. Lett. 92 087201
[8] Zhang G F, Li S S 2005 Phys. Rev. A 72 034302
[9] Xi X Q, Chen W X, Liu Q, Yue R H 2006 Acta Phys. Sin. 55 3026 (in Chinese)[惠小强, 陈文学, 刘起, 岳瑞宏 2006 物理学报 55 3026]
[10] Shan C J, Chen W W, liuT K, Huang Y X, Li H 2008 Acta Phys. Sin. 57 2687 (in Chinese)[单传家, 程维文, 刘堂昆, 黄燕霞, 李宏 2008 物理学报 57 2687]
[11] Zhang G F 2007 Phys. Rev. A 75 034304
[12] Kheirandish F, Akhtarshenas S J, Mohammadi H 2008 Phys. Rev. A 77 042309
[13] Derzhko O, Richter J 1999 Phys. Rev. B 59 100
[14] Li Y C, Li S S 2009 Phys. Rev. A 79 032338
[15] Qin M, Bai Z, Li Y B, Lin S J 2011 Opt. Commun. 284 3149
[16] Li D C, Cao Z L 2008 Eur. Phys. J. D 50 207
[17] Li D C, Wang X P, Cao Z L 2008 J. Phys. 20 32522
[18] Jiang C L, Liu X J, Liu M W, Wang Y H, Peng Z H 2012 Acta Phys. Sin. 61 170302 (in Chinese) [姜春蕾, 刘晓娟, 刘明伟, 王艳辉, 彭朝晖 2012 物理学报 61 170302]
[19] Mohammadia H, Akhtarshenas S J, Kheirandish F 2011 Eur. Phys. J. D 62 439
[20] Xu X B, Liu J M, Yu P F 2008 Chin. Phys. B 17 0456
[21] Milburn G J 1991 Phys. Rev. A 44 5401
[22] Wootters W K 1998 Phys. Rev. Lett. 80 2245
计量
- 文章访问数: 6591
- PDF下载量: 502
- 被引次数: 0