-
在振幅阻尼信道上进行量子隐形传态的过程中, 量子Bell纠缠态将发生退相干, 导致隐形传态质量下降甚至通信失败. 为克服该影响, 本文提出了一种Bell纠缠态补偿方法. 在估计振幅阻尼信道参数的基础上, 将对纠缠态的补偿分为纠缠退相干发生之前的预补偿以及 经历量子振幅阻尼信道之后的匹配补偿两部分. 前者在纠缠源处进行, 后者在两个量子通信 用户处进行, 预补偿及匹配补偿参数与信道特性参数相关. 纠缠补偿完成后, 再进行隐形传态. 理论推导与性能分析结果表明, 相比于不进行纠缠补偿及仅在发生退相干之后进行的纠缠补偿, 本方法能够获得更高的隐形传态保真度, 适当调整补偿参数, 可使保真度接近于1, 对克服纠缠 退相干带来的隐形传态质量下降问题具有一定的意义.During the course of quantum teleportation in amplitude damping channel, the quantum Bell entanglement state will suffer a de-coherence, which will lead to the quality decrease of quantum teleportation, or even communication failure. To overcome this influence, we propose a method to compensate for the de-coherence of Bell entanglement state. Based on the parameter estimation of the amplitude damping channel, the compensation is divided into two steps. The first step (called pre-compensation) is carried out before the occurrence of de-coherence; the second step (called match-compensation) is carried out after the quantum entanglement state has experienced the de-coherence in the amplitude damping channel. The former is done at the EPR source device, while the latter is done at the quantum user device. The parameters of pre-compensation and match-compensation are determined by the amplitude damping coefficient. The quantum teleportation is carried out after the entanglement compensation. We will give the theoretical derivation and performance analysis of this method. Compared with the method that has no compensation and the method that the compensation is only done after de-coherence, the method given in this paper has a higher quantum teleportation fidelity which is close to 1, when the compensation parameter is adjusted accurately. Our method shows an effective influence on the teleportation quality decrease due to the entanglement de-coherence.
-
Keywords:
- quantum teleportation /
- amplitude damping /
- entanglement compensation /
- fidelity
[1] Nicolas S, Christoph S, Hugues D R, Nicolas G 2011 Review of Modern Physics 83 33
[2] Peter V L, Ladd T D, Sanaka K, Yamaguchi F, Kae N, Munro W J, Yamamoto Y 2006 Phys. Rev. Lett. 96 240501
[3] Peter V L, Norbert L, Munro W J, Kae N 2008 Phys. Rev. A. 78 062319
[4] Sheng Y B, Zhou L, Cheng W W, Gong L Y, Zhao S M, Zheng B Y 2012 Chin. Phys. B. 21 030307
[5] Shor P W 1995 Phys. Rev. A 52 2493
[6] Calderbank A R, Shor P W 1996 Phys. Rev. A 54 1098
[7] Richardson T J, Urbanke R L 2000 IEEE Transactions on Information Theory 47 599
[8] Wang Y J, Bai B M, Li Z, Peng J Y, Xiao H L 2012 Chin. Phys. B 21 020304
[9] Zeyang L, Mohammad A A, Muhammad S Z 2013 J. Phys. B: At. Mol. Opt. Phys. 46 145501
[10] Sarovar M, Milburn G J 2006 Journal of Physics. A, Mathematical and General 39 8487
[11] Ji Z, Wang G, Duan R, Yuan F, Ying M 2008 Information Theory, IEEE Transactions on 54 5172
[12] Ballo G, Hangos K M, Petz D 2012 IEEE Transactions on Automatic Control 57 2056
[13] Zhengui X, Hai L, Tongheng L 2013 IEEE Transactions on Automatic Control 58 1805
[14] Fujiwara A 2004 Phys. Rev. A 70 012317
[15] Zhang Y D 2012 Principles of Quantum Information Physics (Beijing: Science Press) p147-253 (in Chinese) [张永德 2012 量子信息物理原理 (北京:科学出版社) 第147–172页]
[16] Marco G G, Matteo G A 2005 Phys. Rev. A 71 052307
[17] Xue L, Nie M, Liu X H 2013 Acta Phys. Sin. 62 170305 (in Chinese) [薛乐, 聂敏, 刘晓慧 2013 物理学报 62 170305]
[18] Nie M, Zhang L, Liu X H 2013 Acta Phys. Sin. 62 230303 (in Chinese) [聂敏, 张琳, 刘晓慧 2013 物理学报 62 230303]
[19] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin JA, Wootters WK 1996 Phys. Rev. Lett. 76 722
-
[1] Nicolas S, Christoph S, Hugues D R, Nicolas G 2011 Review of Modern Physics 83 33
[2] Peter V L, Ladd T D, Sanaka K, Yamaguchi F, Kae N, Munro W J, Yamamoto Y 2006 Phys. Rev. Lett. 96 240501
[3] Peter V L, Norbert L, Munro W J, Kae N 2008 Phys. Rev. A. 78 062319
[4] Sheng Y B, Zhou L, Cheng W W, Gong L Y, Zhao S M, Zheng B Y 2012 Chin. Phys. B. 21 030307
[5] Shor P W 1995 Phys. Rev. A 52 2493
[6] Calderbank A R, Shor P W 1996 Phys. Rev. A 54 1098
[7] Richardson T J, Urbanke R L 2000 IEEE Transactions on Information Theory 47 599
[8] Wang Y J, Bai B M, Li Z, Peng J Y, Xiao H L 2012 Chin. Phys. B 21 020304
[9] Zeyang L, Mohammad A A, Muhammad S Z 2013 J. Phys. B: At. Mol. Opt. Phys. 46 145501
[10] Sarovar M, Milburn G J 2006 Journal of Physics. A, Mathematical and General 39 8487
[11] Ji Z, Wang G, Duan R, Yuan F, Ying M 2008 Information Theory, IEEE Transactions on 54 5172
[12] Ballo G, Hangos K M, Petz D 2012 IEEE Transactions on Automatic Control 57 2056
[13] Zhengui X, Hai L, Tongheng L 2013 IEEE Transactions on Automatic Control 58 1805
[14] Fujiwara A 2004 Phys. Rev. A 70 012317
[15] Zhang Y D 2012 Principles of Quantum Information Physics (Beijing: Science Press) p147-253 (in Chinese) [张永德 2012 量子信息物理原理 (北京:科学出版社) 第147–172页]
[16] Marco G G, Matteo G A 2005 Phys. Rev. A 71 052307
[17] Xue L, Nie M, Liu X H 2013 Acta Phys. Sin. 62 170305 (in Chinese) [薛乐, 聂敏, 刘晓慧 2013 物理学报 62 170305]
[18] Nie M, Zhang L, Liu X H 2013 Acta Phys. Sin. 62 230303 (in Chinese) [聂敏, 张琳, 刘晓慧 2013 物理学报 62 230303]
[19] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin JA, Wootters WK 1996 Phys. Rev. Lett. 76 722
计量
- 文章访问数: 6428
- PDF下载量: 412
- 被引次数: 0