-
本文从Helmholtz自由能出发构建了铅的宽区多相物态方程,覆盖从常温到10 MK、从常压到107GPa的温压范围,计算了冲击雨贡纽线、300 K等温线、熔化线及温稠密过渡区热力学物性,并与实验值、铅已有的宽区物态方程数据库SESAME-3200以及第一性原理模拟结果进行了对比分析。一方面,本文的模型能较好地再现各类实验数据;另一方面,在温稠密过渡区,本文的模型获得了扩展的第一性原理分子动力学模拟结果的验证,相比SESAME-3200更符合第一性原理的模拟结果。本文数据集可在科学数据银行数据库https://www.doi.org/10.57760/sciencedb.j00213.00166中访问获取(审稿阶段请通过私有访问链接查看本文数据集https://www.scidb.cn/s/3mAjeq)。We present a multi-phase equation of state (EOS) for lead (Pb, Z=82) addressing a wide range of density and temperature conditions:
,
The EOS model is based on a standard decomposition of the Helmholtz free energy as a function of the specific volume and the temperature into the cold term, the ion-thermal term, and the electronic excitation term. The cold term models both the compression and the expansion states, the ion-thermal term introduces the Debye approximation and the melting entropy, and the electronic excitation term employs the Thomas–Fermi–Kirzhnits (TFK) model. The thermodynamic properties of the warm-dense lead are calculated using the extended first-principles molecular dynamics (ext-FPMD) method, up to five times compressed ambient density and 0.4 MK in temperature. Predictions are made from our EOS model for the principle Hugoniot, the room-temperature isotherm, the melting curve, and the thermodynamic properties in the warm-dense region. A systematic comparison is drawn to the experimental data, the SESAME-3200 table, and the ext-FPMD calculations. Our EOS model not only agrees with the various experimental data, but also coincides with the ext-FPMD calculations, establishing some superiority over the SESAME-3200 table in the warm-dense region. The datasets presented in this paper, including the tabular EOS consisting of internal energy and pressure at the different densities and temperatures, are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00166(https://www.scidb.cn/s/3mAjeq).
-
Keywords:
- wide-range equation of state /
- lead /
- multiphase /
- warm-dense matter
-
[1] Xu X S, Zhang W X 1986Introduction to practical equation of states (Beijing: Scientific Press) p1, p191(in Chinese) [徐锡申,张万箱1986实用物态方程理论导引(北京:科学出版社)第1页,第191页]
[2] Holzapfel W B, Hartwig M, Sievers W 2001J. Phys. Chem. Ref. Data 30 515
[3] Lyon S P, Johnson J D 1992 Los Alamos Technical Report No. LA-UR-92-3407
[4] More R M, Warren K H, Young D A, Zimmerman G B 1988Phys. Fluids 31 3059
[5] Liu H F, Song H F, Zhang Q L, Zhang G M, Zhao Y H 2016Matter Radiat. Extrem. 1 123
[6] Zhao Y H, Wang L F, Zhang Q L, Zhang L, Song H Z, Gao X Y, Sun B, Liu H F, Song H F 2025Chin. Phys. B 34 036401
[7] Tang W H, Xu B B, Ran X W, Xu Z H 2017Acta Phys. Sin. 66030505(in Chinese) [汤文辉,徐彬彬,冉宪文,徐志宏2017物理学报66 030505]
[8] Graziani F, Desjarlais M P, Redmer R, Trickey S B (Eds.) 2014Frontiers and Challenges in Warm Dense Matter (Cham: Springer International Publishing) p123
[9] Liu Q R 2023Ph. D. Dissertation (Beijing: Peking University) (in Chinese) [刘千锐2023博士学位论文(北京:北京大学)]
[10] Hohenberg P, Kohn W 1964Phys. Rev. B 136 B864
[11] Kohn W, Sham L J 1965Phys. Rev. A 140 A1133
[12] Martin R M 2004Electronic Structure: Basic Theory and Practical Methods (Cambridge: Cambridge University Press) p119
[13] Cytter Y, Rabani E, Neuhauser D, Baer R 2018Phys. Rev. B 97 115207
[14] Militzer B, González-Cataldo F, Zhang S, Driver K P, Soubiran F 2021Phys. Rev. E 103 013203
[15] Zhang S, Wang H, Kang W, Zhang P, He X T 2016Phys. Plasmas 23 042707
[16] Blanchet A, Clérouin J, Torrent M, Soubiran F 2022Comput. Phys. Commun. 271 108215
[17] White A J, Collins L A 2020Phys. Rev. Lett. 125 055002
[18] Liu Q R, Chen M H 2022Phys. Rev. B 106 125132
[19] Wilson B G, Johnson D D, Alam A 2011High Energy Density Phys. 7 61
[20] Starrett C E 2018Phys. Rev. E 97 053205
[21] Walsh J M, Rice M H, Mcqueen R G, Yarger F L 1957Phys. Rev. 108 196
[22] Al'tshuler L V, Krupnikov K K, Brazhnik M I 1958Zh. Eksp. Teor. Fiz. 34 886(in Russian)
[23] Al'tshuler L V, Kormer S B, Bakanova A A, Trunin R F 1960Zh. Eksp. Teor. Fiz. 38 790(in Russian)
[24] McQueen R G, Marsh S P 1960J. Appl. Phys. 31 1253
[25] Al'tshuler L V, Bakanova A A, Bushman A V, Dudoladov I P, Zubarev V N 1977Zh. Eksp. Teor. Fiz. 73 1866(in Russian)
[26] Marsh S P (Ed.) 1980LASL Shock Hugoniot Data (Berkeley: Univ. California Press) p100
[27] Avrorin E N, Vodolaga B K, Voloshin N P, Kuropatenko V F, Kovalenko G V, Simonenko V A, Chernodolyuk B T 1986Pis'ma Zh. Eksp. Teor. Fiz. 43 241(in Russian)
[28] Mitchell A C, Nellis W J, Moriarty J A, Heinle R A, Holmes N C, Tipton R E, Repp G W 1991J. Appl. Phys. 69 2981
[29] Trunin R F, Il'kaeva L A, Podurets M A, Popov L V, Pechenkin B V, Prokhorov L V, Sevast'yanov A G, Khrustalev V V 1994Teplofiz. Vys. Temp. 32 692(in Russian)
[30] Trunin R F 1994Usp. Fiz. Nauk 164 1215(in Russian)
[31] Mao H K, Wu Y, Shu J F 1990Solid State Commun. 74 1027
[32] Partouche-Sebban D, Pélissier J. L. 2005J. Appl. Phys. 97 043521
[33] Dewaele A, Mezouar M, Guignot N, Loubeyre P 2007Phys. Rev. B 76 144106
[34] Smirnov N A 2020J. Phys.: Condens. Matter 33035402
[35] Zhang S, Morales M A 2020AIP Conf. Proc. 2272 090004
[36] Yang X, Zeng X G, Chen H Y, Wang Y T, He L, Wang F 2019J. Alloy. Comp. 808 151702
[37] Strässle Th, Klotz S, Kunc K, Pomjakushin V, White J S 2014Phys. Rev. B 90 014101
[38] Kozyrev N V, Gordeev V V 2022Metals 12 16
[39] Schulte O, Holzapfel W B 1995Phys. Rev. B 52 12636
[40] Morita K, Sobolev V, Flad M 2007J. Nucl. Mater. 362 227
[41] Sobolev V P, Schuurmans P, Benamati G 2008J. Nucl. Mater. 376 358
[42] Song P, Cai L C 2010Physica B 405 1509
[43] Gao X Y, Mo Z Y, Fang J, Song H F, Wang H 2017Comput. Phys. Commun. 211 54
[44] Zhou Y Z, Wang H, Liu Y, Gao X Y, Song H F 2018Phys. Rev. E 97 033305
[45] Fang J, Gao X Y, Song H F 2019Commun. Comput. Phys. 26 1196
[46] Blanchet A, Torrent M, Clérouin J 2020Phys. Plasmas 27 122706
[47] Sjostrom T, Crockett S, Rudin S 2016Phys. Rev. B 94 144101
[48] Kadatskiy M A 2019High Energy Density Phys. 33 100700
[49] Liu X, Zhang X H, Gao C, Zhang S, Wang C, Li D F, Zhang P, Kang W, Zhang W Y, He X T 2021Phys. Rev. B 103 174111
[50] Schwarz K 2003J. Solid State Chem. 176 319
[51] Benedict L X, Driver K P, Hamel S, Militzer B, Qi T, Correa A A, Saul A, Schwegler E 2014Phys. Rev. B 89 224109
[52] Mattsson A E 2012 Sandia Technical Report No. SAND2012-7389
[53] Eliezer S, Ricci R A (Eds.) 1991High Pressure Equations of State: Theory and Applications (Amsterdam: North Holland) p249
[54] Johnson J D 1991Int. J. High Press. Res. 6 277
[55] Benedict L X, Ogitsu T, Trave A, Wu C J, Sterne P A, Schwegler E 2009Phys. Rev. B 79 064106
[56] Wilson B, Sonnad V, Sterne P, Isaace W 2006J. Quant. Spectrosc. Ra. 99 658
计量
- 文章访问数: 11
- PDF下载量: 0
- 被引次数: 0