-
辐射不透明度实验数据用于评估不透明度理论模型及其计算精度。针对惯性约束聚变点火靶壳层材料碳的辐射不透明度数据研究需求,本项工作在神光III原型大型激光装置上开展了辐射加热碳等离子体的辐射不透明度实验研究。实验中采用八路纳秒激光注入锥柱型金黑腔产生高温X光辐射场,然后通过辐射场加热黑腔中心的CH薄膜产生高温等离子体,并利用multi-1D程序模拟了等离子体的温度和密度时间演化过程。采用空间分辨门控平焦场光栅谱仪结合第九路束匀滑面背光技术,在同一发次中对背光经过CH半样品的吸收光谱和背光源谱进行了测量。最后,将实验获得的碳离子(温度65eV,密度0.003g/cm3)在300eV-500eV能区的透过率谱与DCA/UTA光谱理论计算结果进行了比较。Experimental opacity data were used to evaluate the opacity models and their accuracy of the calculated results. In order to study the opacity of carbon material in the shell of the inertial confinement fusion ignition target, the experimental study of the spectral-resolved opacity of radiation heated carbon plasma was carried out on the Shenguang III prototype laser facility. Eight nanosecond lasers were injected into a conical-cylindrical gold hohlraum and converted to intense X-ray radiation,the high temperature plasma was obtained by radiatively heating the CH film in the center of the hohlraum. Temporal evolutions of temperature and density of carbon plasma were simulated with the Multi-1D code. By using a spatially resolved gated flat field grating spectrometer combined with the ninth beam smoothing surface backlight technology, the absorption spectra and backlighter spectra of CH sample were measured in one shot. Finally, the experimental transmission spectra of carbon plasma (with temperature of 65eV and density of 0.003g/cm3) in the 300eV-500eV region have been obtained and compared with the calculated results of a DCA/UTA opacity code.
-
Keywords:
- Radiative opacity /
- Inertial confinement fusion /
- Absorption spectra
-
[1] Rogers F J, Iglesias C A, 1994 Science 263, 50.
[2] Perry T S, Davidson S J, Serduke F J D, Bach D R, Smith C C, Foster J M, Doyas R J, Ward R A, Iglesias C A, Rogers F J, Abdallah J, Stewart R E, Kilkenny J D, Lee R W 1991 Phys. Rev. Lett. 67 3784.
[3] Springer P T, Fields D J, Wilson B G, Nash J K, Goldstein W H, Iglesias C A, Rogers F J, Swenson J K, Chen M H, Bar-Shalom A, Stewart R E 1992 Phys. Rev. Lett. 69 3735.
[4] Bailey J E, Nagayama T, Loisel G P, Rochau G A, Blancard C, Colgan J, Cosse P, Faussurier G, Fontes C J, Gilleron F, Golovkin I, Hansen S B, Iglesias C A, Kilcrease D P, MacFarlane J J, Mancini R C, Nahar S N, Orban C, Pain J C, Pradhan A K, Sherrill M, Wilson B G 2015 Nature 517 56.
[5] Nagayama T, Bailey J E, Loisel G P, Dunham G S, Rochau G A, Blancard C, Colgan J, Cosse P, Faussurier G, Fontes C J, Gilleron F, Hansen S B, Iglesias C A, Golovkin I E, Kilcrease D P, MacFarlane J J, Mancini R C, More R M, Orban C, Pain J C, Sherrill M E, Wilson B G 2019 Phys. Rev. Lett. 122 235001.
[6] Gao C, Liu Y P, Yan G P, Yan J, Chen X Q, Hou Y, Jin F T, Wu J H, Zeng J L, Yuan J M 2023 Acta Phys. Sin. 72 183101 (in Chinese) [高城,刘彦鹏,严冠鹏,闫杰,陈小棋,侯永,靳奉涛,吴建华,曾交龙,袁建民 2023 物理学报 72 183101].
[7] MacKinnon A J, Meezan N B, Ross J S, Pape S L, Hopkins L B, Divol L, Ho D, Milovich J, Pak A, Ralph J, Döppner T, Patel P K, Thomas C, Tommasini R, Haan S, MacPhee A G, McNaney J, Caggiano J, Hatarik R, Bionta R, Ma T, Spears B, Rygg J R, Benedetti L R, Town R P J, Bradley D K, Dewald E L, Fittinghoff D, Jones O S, Robey H R, Moody J D, Khan S, Callahan D A, Hamza A, Biener J, Celliers P M, Braun D G, Erskine D J, Prisbrey S T, Wallace R J, Kozioziemski B, Dylla-Spears R, Sater J, Collins G, Storm E, Hsing W, Landen O, Atherton J L, Lindl J D, Edwards M J, Frenje J A, Gatu-Johnson M, Li C K, Petrasso R, Rinderknecht H, Rosenberg M, Séguin F H, Zylstra A, Knauer J P, Grim G, Guler N, Merrill F, Olson R, Kyrala G A, Kilkenny J D, Nikroo A, Moreno K, Hoover D E, Wild C, Werner E 2014 Phys. Plasmas 21 056318.
[8] Zylstra A B, Kritcher A L, Hurricane O A, Callahan D A, Baker K, Braun T, Casey D T, Clark D, Clark K, Doppner T, Divol L, Hinkel D E, Hohenberger M, Kong C, Landen O L, Nikroo A, Pak A, Patel P, Ralph J E, Rice N, Tommasini R, Schoff M, Stadermann M, Strozzi D, Weber C, Young C, Wild C, Town R P J, Edward M J 2021 Phys. Rev. Lett. 126 025001.
[9] Olson R E, Rochau G A, Landen O L, Leeper R J 2011 Phys. Plasmas 18 032706.
[10] Zhao Y, Wei M X, Deng B, Zhu T, Hu Z M, Xiong G, Shang W L, Kuang L Y, Yang G H, Zhang J Y, Yang J M 2011 Chin. Phys. Lett. 28 060701.
[11] Zhao Y, Zhang J Y, Liu J S, Yuan X, Jin F T 2009 Rev. Sci. Instrum. 80 043505.
[12] Xiong G, Yang G H, Li H, Zhang J Y, Zhao Y, Hu Z M, Wei M X, Qing B, Yang J M, Liu S Y, Jiang S N 2014 Rev. Sci. Instrum. 85 43104.
[13] Qing B, Wei M X, Yang G H, Zhang Z Y, Zhao Y, Xiong G, Lv M, Hu Z M, Zhang J Y, Liu S Y, Yang J M 2018 Rev. Sci. Instrum. 89 083108.
[14] Zhang J Y, Yang J M, Xu Y, Yang G H, Ding Y N, Yan J, Yuan J M, Ding Y K, Zheng Z J, Zhao Y, Hu Z M 2009 Phys. Rev. E 79 016401.
[15] Zhao Y, Shang W L, Xiong G, Jin F T, Hu Z M, Wei M X, Yang G H, Zhang J Y, Yang J M 2010 Chin. Phys. Lett. 27 113202.
[16] Xiong G, Yang J M, Zhang J Y, Hu Z M, Zhao Y, Qing B, Yang G H, Wei M X, Yi R Q, Song T M, Li H, Yuan Z, Lv M, Meng X J, Xu Y, Wu Z Q, Yan J 2016 The Astrophysical Journal 816 36.
[17] Qing B, Zhang Z Y, Wei M X, Yang Y M, Yang Z W, Yang G H, Zhao Y, Lv M, Xiong G, Hu Z M, Zhang J Y, Yang J M, Yan J 2018 Phys. Plasma 25 023301.
[18] Xiong G, Qing B, Zhang Z Y, Jing L F, Zhao Y, Wei M X, Yang Y M, Hou L F, Huang C W, Zhu T, Song T M, Lv M, Zhao Y, Zhang Y X, Yang G H, Wu Z Q, Yan J, Zou Y M, Zhang J Y, Yang J M 2024 Matter Radiat. Extremes 9 047801.
[19] Yang J M, Ding Y N, Yan J, Li J M, Zhang B H, Yang G H, Zhang W H, Wang Y M 2022 Phys. Plasmas 9 678.
[20] Zhang J Y, Yang J M, Xiong G, Meng X J, Yang G H, Zhao Y, Qing B, Li H, Yuan Z, Yang Y M, Wu Z Q, Yan J, Liu S Y, Jiang S E, Ding Y K 2015 Science and Technology of High Energy Density 1 1.
[21] Zhao Y, Yang J M, Zhang J Y, Yang G H, Wei M X, Xiong G, Song T M, Zhang Z Y, Bao L H, Deng B, Li Y K, He X A, Li C G, Mei Y, Yu R Z, Jiang S E, Liu S Y, Ding Y K Zhang B H Phys. Rev. Lett. 2013 111 155003.
[22] Li Z C, Jiang X H, Liu S Y, Huang T X, Zheng J, Yang J M, Li S W, Guo L, Zhao X F, Du H B, Song T M, Yi R Q, Liu Y G, Jiang S E, Ding Y K 2010 Rev. Sci. Instrum. 81 073504.
[23] Zhang Z Y, Zhao Y, Zhang J Y, Hu Z M, Jing L F, Qing B, Xiong G, Lv M, Du H B, Yang Y M, Zhan X Y, Yu R Z, Mei Y, Yang J M. 2019 Phys. Plasmas 26 072704.
[24] Ramis R, Schmalz R, Meyer-Ter-Vehn J 1988 Comput. Phys. Commun. 49 475.
[25] Yan J, Qiu Y B 2001 Phys.Rev.E 64 056401.
计量
- 文章访问数: 19
- PDF下载量: 0
- 被引次数: 0