搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于神光III原型装置的辐射加热碳等离子体辐射不透明度实验研究

赵阳 青波 熊刚 张志宇 孙奥 杨国洪 赵妍 张玉雪 黄成武 朱托 宋天明 李丽灵 李晋 车兴森 詹夏宇 张继彦 董云松 杨家敏

引用本文:
Citation:

基于神光III原型装置的辐射加热碳等离子体辐射不透明度实验研究

赵阳, 青波, 熊刚, 张志宇, 孙奥, 杨国洪, 赵妍, 张玉雪, 黄成武, 朱托, 宋天明, 李丽灵, 李晋, 车兴森, 詹夏宇, 张继彦, 董云松, 杨家敏

Radiative opacity of carbon plasma heated by SGIII prototype laser facility

ZHAO Yang, QING Bo, XIONG Gang, ZHANG Zhiyu, SUN Ao, YANG Guohong, ZHAO Yan, ZHANG Yuxue, HUANG Chengwu, ZHU Tuo, SONG Tianming, LI Liling, LI Jin, CHE Xingsen, ZHAN Xiayu, ZHANG Jiyan, DONG Yunsong, YANG Jiamin
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 辐射不透明度实验数据用于评估不透明度理论模型及其计算精度. 针对惯性约束聚变点火靶壳层材料碳的辐射不透明度数据研究需求, 本工作在神光III原型大型激光装置上开展了辐射加热碳等离子体的辐射不透明度实验研究. 实验中采用8路纳秒激光注入锥柱型金黑腔产生高温X光辐射场, 通过辐射场加热黑腔中心的CH薄膜产生高温等离子体, 并利用multi-1D程序模拟了等离子体的温度和密度时间演化过程. 采用空间分辨门控平焦场光栅谱仪结合第9路束匀滑面背光技术, 在同一发次中对背光经过CH半样品的吸收光谱和背光源谱进行测量. 最后, 将实验获得的碳离子(温度65 eV, 密度0.003 g/cm3)在300—500 eV能区的透过率谱与DCA/UTA光谱理论计算结果进行比较. 本文数据集可在https://doi.org/10.57760/sciencedb.j00213.00153中访问获取.
    Experimental opacity data are used to evaluate the opacity models and their accuracy of the calculated results. In order to study the opacity of carbon material in the shell of the inertial confinement fusion ignition target, the experimental study of the spectrally-resolved opacity of radiation heated carbon plasma is carried out on the Shenguang III prototype laser facility. Eight nanosecond lasers are injected into a conical-cylindrical gold hohlraum and converted into intense X-ray radiation, the high-temperature plasma is obtained by radiatively heating the CH film in the center of the hohlraum. Temporal evolutions of temperature and density of carbon plasma are simulated with the Multi-1D code. By using a spatially-resolved flat-field grating spectrometer combined with the ninth beam smoothing surface backlight technology, the absorption spectra and backlighter spectra of CH sample are measured in one shot. Finally, the experimental transmission spectra of carbon plasma (with a temperature of 65eV and density of 0.003 g/cm3) in a range of 300–500 eV are obtained and compared with the calculated results of a DCA/UTA opacity code. A The datasets presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.00153.
  • 图 1  实验排布示意图

    Fig. 1.  Schematic of the experimental setup.

    图 2  CH样品的辐射流体力学模拟 (a)辐射温度时间演化; (b)温度和密度时间演化

    Fig. 2.  Hydrodynamic simulation of the CH sample: (a) The temporal evolution of radiation temperature at the sample; (b) the temporal evolutions of temperature and density.

    图 3  0.65 ns时刻CH样品的温度密度空间分布

    Fig. 3.  Temperature and density profile of the CH sample at 0.65 ns.

    图 4  空间分辨的X光吸收与背光源谱图像

    Fig. 4.  Space-resolved X-ray absorption and backlighter spectra.

    图 5  (a)实验背光源谱与吸收谱; (b)实验与理论透过率光谱的比较

    Fig. 5.  (a)Experimental backlighter and absorption spectra; (b)the comparisons of the measured transmission spectrum with the calculated result.

  • [1]

    Rogers F J, Iglesias C A, 1994 Science 263 50Google Scholar

    [2]

    Perry T S, Davidson S J, Serduke F J D, Bach D R, Smith C C, Foster J M, Doyas R J, Ward R A, Iglesias C A, Rogers F J, Abdallah J, Stewart R E, Kilkenny J D, Lee R W 1991 Phys. Rev. Lett. 67 3784Google Scholar

    [3]

    Springer P T, Fields D J, Wilson B G, Nash J K, Goldstein W H, Iglesias C A, Rogers F J, Swenson J K, Chen M H, Bar-Shalom A, Stewart R E 1992 Phys. Rev. Lett. 69 3735Google Scholar

    [4]

    Bailey J E, Nagayama T, Loisel G P, Rochau G A, Blancard C, Colgan J, Cosse P, Faussurier G, Fontes C J, Gilleron F, Golovkin I, Hansen S B, Iglesias C A, Kilcrease D P, MacFarlane J J, Mancini R C, Nahar S N, Orban C, Pain J C, Pradhan A K, Sherrill M, Wilson B G 2015 Nature 517 56Google Scholar

    [5]

    Nagayama T, Bailey J E, Loisel G P, Dunham G S, Rochau G A, Blancard C, Colgan J, Cosse P, Faussurier G, Fontes C J, Gilleron F, Hansen S B, Iglesias C A, Golovkin I E, Kilcrease D P, MacFarlane J J, Mancini R C, More R M, Orban C, Pain J C, Sherrill M E, Wilson B G 2019 Phys. Rev. Lett. 122 235001Google Scholar

    [6]

    高城, 刘彦鹏, 严冠鹏, 闫杰, 陈小棋, 侯永, 靳奉涛, 吴建华, 曾交龙, 袁建民 2023 物理学报 72 183101Google Scholar

    Gao C, Liu Y P, Yan G P, Yan J, Chen X Q, Hou Y, Jin F T, Wu J H, Zeng J L, Yuan J M 2023 Acta Phys. Sin. 72 183101Google Scholar

    [7]

    MacKinnon A J, Meezan N B, Ross J S, Pape S L, Hopkins L B, Divol L, Ho D, Milovich J, Pak A, Ralph J, Döppner T, Patel P K, Thomas C, Tommasini R, Haan S, MacPhee A G, McNaney J, Caggiano J, Hatarik R, Bionta R, Ma T, Spears B, Rygg J R, Benedetti L R, Town R P J, Bradley D K, Dewald E L, Fittinghoff D, Jones O S, Robey H R, Moody J D, Khan S, Callahan D A, Hamza A, Biener J, Celliers P M, Braun D G, Erskine D J, Prisbrey S T, Wallace R J, Kozioziemski B, Dylla-Spears R, Sater J, Collins G, Storm E, Hsing W, Landen O, Atherton J L, Lindl J D, Edwards M J, Frenje J A, Gatu-Johnson M, Li C K, Petrasso R, Rinderknecht H, Rosenberg M, Séguin F H, Zylstra A, Knauer J P, Grim G, Guler N, Merrill F, Olson R, Kyrala G A, Kilkenny J D, Nikroo A, Moreno K, Hoover D E, Wild C, Werner E 2014 Phys. Plasmas 21 056318Google Scholar

    [8]

    Zylstra A B, Kritcher A L, Hurricane O A, Callahan D A, Baker K, Braun T, Casey D T, Clark D, Clark K, Doppner T, Divol L, Hinkel D E, Hohenberger M, Kong C, Landen O L, Nikroo A, Pak A, Patel P, Ralph J E, Rice N, Tommasini R, Schoff M, Stadermann M, Strozzi D, Weber C, Young C, Wild C, Town R P J, Edward M J 2021 Phys. Rev. Lett. 126 025001Google Scholar

    [9]

    Olson R E, Rochau G A, Landen O L, Leeper R J 2011 Phys. Plasmas 18 032706Google Scholar

    [10]

    Zhao Y, Wei M X, Deng B, Zhu T, Hu Z M, Xiong G, Shang W L, Kuang L Y, Yang G H, Zhang J Y, Yang J M 2011 Chin. Phys. Lett. 28 060701Google Scholar

    [11]

    Zhao Y, Zhang J Y, Liu J S, Yuan X, Jin F T 2009 Rev. Sci. Instrum. 80 043505.Google Scholar

    [12]

    Xiong G, Yang G H, Li H, Zhang J Y, Zhao Y, Hu Z M, Wei M X, Qing B, Yang J M, Liu S Y, Jiang S N 2014 Rev. Sci. Instrum. 85 43104Google Scholar

    [13]

    Qing B, Wei M X, Yang G H, Zhang Z Y, Zhao Y, Xiong G, Lv M, Hu Z M, Zhang J Y, Liu S Y, Yang J M 2018 Rev. Sci. Instrum. 89 083108Google Scholar

    [14]

    Zhang J Y, Yang J M, Xu Y, Yang G H, Ding Y N, Yan J, Yuan J M, Ding Y K, Zheng Z J, Zhao Y, Hu Z M 2009 Phys. Rev. E 79 016401Google Scholar

    [15]

    Zhao Y, Shang W L, Xiong G, Jin F T, Hu Z M, Wei M X, Yang G H, Zhang J Y, Yang J M 2010 Chin. Phys. Lett. 27 113202Google Scholar

    [16]

    Xiong G, Yang J M, Zhang J Y, Hu Z M, Zhao Y, Qing B, Yang G H, Wei M X, Yi R Q, Song T M, Li H, Yuan Z, Lv M, Meng X J, Xu Y, Wu Z Q, Yan J 2016 Astrophys. J. 816 36Google Scholar

    [17]

    Qing B, Zhang Z Y, Wei M X, Yang Y M, Yang Z W, Yang G H, Zhao Y, Lv M, Xiong G, Hu Z M, Zhang J Y, Yang J M, Yan J 2018 Phys. Plasma 25 023301Google Scholar

    [18]

    Xiong G, Qing B, Zhang Z Y, Jing L F, Zhao Y, Wei M X, Yang Y M, Hou L F, Huang C W, Zhu T, Song T M, Lv M, Zhao Y, Zhang Y X, Yang G H, Wu Z Q, Yan J, Zou Y M, Zhang J Y, Yang J M 2024 Matter Radiat. Extremes 9 047801Google Scholar

    [19]

    Yang J M, Ding Y N, Yan J, Li J M, Zhang B H, Yang G H, Zhang W H, Wang Y M 2022 Phys. Plasmas 9 678

    [20]

    Zhang J Y, Yang J M, Xiong G, Meng X J, Yang G H, Zhao Y, Qing B, Li H, Yuan Z, Yang Y M, Wu Z Q, Yan J, Liu S Y, Jiang S E, Ding Y K 2015 Science and Technology of High Energy Density 1 1

    [21]

    Zhao Y, Yang J M, Zhang J Y, Yang G H, Wei M X, Xiong G, Song T M, Zhang Z Y, Bao L H, Deng B, Li Y K, He X A, Li C G, Mei Y, Yu R Z, Jiang S E, Liu S Y, Ding Y K Zhang B H 2013 Phys. Rev. Lett. 111 155003Google Scholar

    [22]

    Li Z C, Jiang X H, Liu S Y, Huang T X, Zheng J, Yang J M, Li S W, Guo L, Zhao X F, Du H B, Song T M, Yi R Q, Liu Y G, Jiang S E, Ding Y K 2010 Rev. Sci. Instrum. 81 073504Google Scholar

    [23]

    Zhang Z Y, Zhao Y, Zhang J Y, Hu Z M, Jing L F, Qing B, Xiong G, Lv M, Du H B, Yang Y M, Zhan X Y, Yu R Z, Mei Y, Yang J M 2019 Phys. Plasmas 26 072704Google Scholar

    [24]

    Ramis R, Schmalz R, Meyer-Ter-Vehn J 1988 Comput. Phys. Commun. 49 475Google Scholar

    [25]

    Yan J, Qiu Y B 2001 Phys. Rev. E 64 056401Google Scholar

  • [1] 李树, 王旸, 姬志成, 蓝可. 高温热辐射输运模拟的蒙特卡罗全局降方差方法. 物理学报, doi: 10.7498/aps.72.20230218
    [2] 杨钧兰, 钟哲强, 翁小凤, 张彬. 惯性约束聚变装置中靶面光场特性的统计表征方法. 物理学报, doi: 10.7498/aps.68.20182091
    [3] 江秀娟, 唐一凡, 王利, 李菁辉, 王博, 项颖. 考虑钕玻璃放大器增益特性的光谱色散匀滑系统性能研究. 物理学报, doi: 10.7498/aps.66.124204
    [4] 聂伟, 阚瑞峰, 许振宇, 姚路, 夏晖晖, 彭于权, 张步强, 何亚柏. 基于TDLAS技术的水汽低温吸收光谱参数测量. 物理学报, doi: 10.7498/aps.66.204204
    [5] 王健, 侯鹏程, 张彬. 基于复合型光栅的光谱色散匀滑新方案. 物理学报, doi: 10.7498/aps.65.204201
    [6] 赵英奎, 欧阳碧耀, 文武, 王敏. 惯性约束聚变中氘氚燃料整体点火与燃烧条件研究. 物理学报, doi: 10.7498/aps.64.045205
    [7] 李树, 李刚, 田东风, 邓力. 热辐射输运问题的隐式蒙特卡罗方法求解. 物理学报, doi: 10.7498/aps.62.249501
    [8] 张继彦, 杨家敏, 杨国洪, 丁耀南, 李军, 颜君, 吴泽清, 丁永坤, 张保汉, 郑志坚. 激光直接加热自背光法辐射不透明度测量方法探索. 物理学报, doi: 10.7498/aps.62.195201
    [9] 宋天明, 易荣清, 崔延莉, 于瑞珍, 杨家敏, 朱托, 侯立飞, 杜华冰. ICF实验软X射线能谱仪对辐射能流时间关联测量的时标系统. 物理学报, doi: 10.7498/aps.61.075208
    [10] 张占文, 漆小波, 李波. 惯性约束聚变点火靶候选靶丸特点及制备研究进展. 物理学报, doi: 10.7498/aps.61.145204
    [11] 晏骥, 江少恩, 苏明, 巫顺超, 林稚伟. X射线相衬成像应用于惯性约束核聚变多层球壳靶丸检测. 物理学报, doi: 10.7498/aps.61.068703
    [12] 李宁, 翁春生. 非标定波长调制吸收光谱气体测量研究. 物理学报, doi: 10.7498/aps.60.070701
    [13] 占江徽, 姚欣, 高福华, 阳泽健, 张怡霄, 郭永康. 惯性约束聚变驱动器连续相位板前置时频率转换晶体内部光场研究. 物理学报, doi: 10.7498/aps.60.014205
    [14] 张锐, 王建军, 粟敬钦, 刘兰琴, 丁磊, 唐军, 刘华, 景峰, 张小民. 基于波导相位调制器的光谱色散平滑技术实验研究. 物理学报, doi: 10.7498/aps.59.6290
    [15] 张锐, 王建军, 粟敬钦, 刘兰琴, 邓青华. 基于线性调频脉冲的光谱色散平滑技术实验研究. 物理学报, doi: 10.7498/aps.59.1088
    [16] 姚欣, 高福华, 高博, 张怡霄, 黄利新, 郭永康, 林祥棣. 惯性约束聚变驱动器终端束匀滑器件前置时频率转换系统优化研究. 物理学报, doi: 10.7498/aps.58.4598
    [17] 姚欣, 高福华, 张怡霄, 温圣林, 郭永康, 林祥棣. 激光惯性约束聚变驱动器终端光学系统中束匀滑器件前置的条件研究. 物理学报, doi: 10.7498/aps.58.3130
    [18] 丁 君, 杨秋红, 唐在峰, 徐 军, 苏良碧. Er3+/Yb3+共掺的氧化镧钇透明陶瓷的光谱性能研究. 物理学报, doi: 10.7498/aps.56.2207
    [19] 王 策, 陈晓波, 张春林, 张蕴芝, 陈 鸾, 马 辉, 李 崧, 高爱华. Er3+:GdVO4中Er3+离子的光谱参数计算和晶场中能级分裂的讨论. 物理学报, doi: 10.7498/aps.56.6090
    [20] 马 文, 靳奉涛, 袁建民. 平均原子模型中谱线位置偏移对辐射不透明度的影响. 物理学报, doi: 10.7498/aps.56.5709
计量
  • 文章访问数:  238
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-07
  • 修回日期:  2025-06-02
  • 上网日期:  2025-07-03

/

返回文章
返回