搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

惯性约束聚变中氘氚燃料整体点火与燃烧条件研究

赵英奎 欧阳碧耀 文武 王敏

引用本文:
Citation:

惯性约束聚变中氘氚燃料整体点火与燃烧条件研究

赵英奎, 欧阳碧耀, 文武, 王敏

Critical value of volume ignition and condition of nonequilibriem burning of DT in inertial confinement fusion

Zhao Ying-Kui, Ouyang Bei-Yao, Wen Wu, Wang Min
PDF
导出引用
  • 在局域热动平衡近似下, 利用能量平衡关系, 建立热核系统整体点火能量平衡方程, 对该方程求解得到热核反应系统点火阈值. 在计算和分析的基础上给出参数空间的点火关系, 以及该条件受装量、核子数比以及返照率等因素的影响情况. 点火时刻面密度越大, 则对应的点火温度越低, 并且电子-辐射温度脱离越小, 越接近三温平衡的点火状态; 反之则在点火时刻对应较大温度脱离. 更重要的是, 该分析方法还可以根据点火时刻系统的物理状态, 通过线性稳定性分析方法, 描述出系统的后续行为, 也就是说, 可以判断出这样的热核系统能否继续升温并实现深度燃烧.
    In the local thermodynamic equilibrium approximation, we study the problems on low-temperature volume ignition of DT fuel. The temperature and compression threshold of volume ignition are given by solving the ion, electric and radiation energy equation. The ignitions points are affected by the albedo, DT mass, abundance ratio, etc. At the point of ignition, the temperature reduces with the increase of areal density. The trends of variations in radiation and electron temperature become closer to each other. The most important fact is that the subsequent development of the system can be given by analyzing the stationary solution based on the linear stability method. In other words, we can estimate whether the system can enter into a deep-burning state by using this method.
    • 基金项目: 中国工程物理研究院科学技术基金(批准号: 2012B0102009, 2011A0102008)和国家自然科学基金(批准号: 11205018, 11175026)资助的课题.
    • Funds: Project supported by the Science and Technology Foundation of China Academy of Engineering Physics (Grant Nos. 2012B0102009, 2011A0102008) and the National Natural Science Foundation of China (Grant Nos. 11205018, 11175026).
    [1]

    Johnson T H 1984 Proc. IEEE 72 548

    [2]

    Hora H, Ray P S 1978 Zeitschrift fur Naturforschung 33A 890

    [3]
    [4]
    [5]

    Harrison E R 1963 Phys. Rev. Lett. 11 535

    [6]

    Betti R, Zhou C D, Anderson K S, Perkins L J, Theohald W, Solodov A A 2007 Phys. Rev. Lett. 98 155001

    [7]
    [8]

    Malekynia B, Razavipour S S 2013 Chin. Phys. B 22 055202

    [9]
    [10]
    [11]

    Yuan Q, Wei X F, Zhang X M, Zhang X, Zhao J P, Huang W H, Hu D X 2012 Acta Phys. Sin. 61 114206 (in Chinese) [袁强, 魏晓峰, 张小民, 张鑫, 赵军普, 黄文会, 胡东霞 2012 物理学报 61 114206]

    [12]

    Lindl J 1995 Phys.Plasmas 2 3933

    [13]
    [14]
    [15]

    Varnum W S, Delamater N D, Evans S C, Gobby P L, Moore J E, Wallace J M, Watt R G, Calvin J P, Turner R, Glebov V, Soures J, Stoechl C 2000 Phys. Rev. Lett. 84 5153

    [16]

    Matzen M K 1997 Phys. Plasmas 4 1519

    [17]
    [18]
    [19]

    Wang Z, Xu R K, Yang J L, Hua X S, Li L B, Xu Z P, Ning J M, Song F J 2007 Chin. Phys. 16 772

    [20]
    [21]

    Sheng L, Wang L P, Wu J, Li Y, Peng B D, Zhang M 2011 Chin. Phys. B 20 055202

    [22]
    [23]

    Fraley G S, Linnebur E J, Mason R J, Morse R L 1974 Phys. Fluids 17 474

    [24]
    [25]

    Caruso A 1974 Plasma Phys. 16 683

    [26]
    [27]

    He X T, Li Y S 1994 AIP Conf. Proc. 318 334

    [28]
    [29]

    Li Y S, He X T, Yu M 1994 AIP Conf. Proc. 406 232

    [30]
    [31]

    Amendt P, Colvin J D, Tipton R E, Hinkel D E, Edwards M J, Landen O L, Ramshaw J D, Suter L J, Varnum W S, Wattd R G 2002 Phys. Plasmas 9 2221

    [32]
    [33]

    Bosch H S, Hale G M 1992 Nucl. Fusion 32 611

  • [1]

    Johnson T H 1984 Proc. IEEE 72 548

    [2]

    Hora H, Ray P S 1978 Zeitschrift fur Naturforschung 33A 890

    [3]
    [4]
    [5]

    Harrison E R 1963 Phys. Rev. Lett. 11 535

    [6]

    Betti R, Zhou C D, Anderson K S, Perkins L J, Theohald W, Solodov A A 2007 Phys. Rev. Lett. 98 155001

    [7]
    [8]

    Malekynia B, Razavipour S S 2013 Chin. Phys. B 22 055202

    [9]
    [10]
    [11]

    Yuan Q, Wei X F, Zhang X M, Zhang X, Zhao J P, Huang W H, Hu D X 2012 Acta Phys. Sin. 61 114206 (in Chinese) [袁强, 魏晓峰, 张小民, 张鑫, 赵军普, 黄文会, 胡东霞 2012 物理学报 61 114206]

    [12]

    Lindl J 1995 Phys.Plasmas 2 3933

    [13]
    [14]
    [15]

    Varnum W S, Delamater N D, Evans S C, Gobby P L, Moore J E, Wallace J M, Watt R G, Calvin J P, Turner R, Glebov V, Soures J, Stoechl C 2000 Phys. Rev. Lett. 84 5153

    [16]

    Matzen M K 1997 Phys. Plasmas 4 1519

    [17]
    [18]
    [19]

    Wang Z, Xu R K, Yang J L, Hua X S, Li L B, Xu Z P, Ning J M, Song F J 2007 Chin. Phys. 16 772

    [20]
    [21]

    Sheng L, Wang L P, Wu J, Li Y, Peng B D, Zhang M 2011 Chin. Phys. B 20 055202

    [22]
    [23]

    Fraley G S, Linnebur E J, Mason R J, Morse R L 1974 Phys. Fluids 17 474

    [24]
    [25]

    Caruso A 1974 Plasma Phys. 16 683

    [26]
    [27]

    He X T, Li Y S 1994 AIP Conf. Proc. 318 334

    [28]
    [29]

    Li Y S, He X T, Yu M 1994 AIP Conf. Proc. 406 232

    [30]
    [31]

    Amendt P, Colvin J D, Tipton R E, Hinkel D E, Edwards M J, Landen O L, Ramshaw J D, Suter L J, Varnum W S, Wattd R G 2002 Phys. Plasmas 9 2221

    [32]
    [33]

    Bosch H S, Hale G M 1992 Nucl. Fusion 32 611

计量
  • 文章访问数:  2370
  • PDF下载量:  5007
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-18
  • 修回日期:  2014-09-11
  • 刊出日期:  2015-02-05

惯性约束聚变中氘氚燃料整体点火与燃烧条件研究

  • 1. 北京应用物理与计算数学研究所, 北京 100094
    基金项目: 

    中国工程物理研究院科学技术基金(批准号: 2012B0102009, 2011A0102008)和国家自然科学基金(批准号: 11205018, 11175026)资助的课题.

摘要: 在局域热动平衡近似下, 利用能量平衡关系, 建立热核系统整体点火能量平衡方程, 对该方程求解得到热核反应系统点火阈值. 在计算和分析的基础上给出参数空间的点火关系, 以及该条件受装量、核子数比以及返照率等因素的影响情况. 点火时刻面密度越大, 则对应的点火温度越低, 并且电子-辐射温度脱离越小, 越接近三温平衡的点火状态; 反之则在点火时刻对应较大温度脱离. 更重要的是, 该分析方法还可以根据点火时刻系统的物理状态, 通过线性稳定性分析方法, 描述出系统的后续行为, 也就是说, 可以判断出这样的热核系统能否继续升温并实现深度燃烧.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回