搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对美国国家点火装置2010年以来实验设计思路的分析

张棋 马积瑞 范金燕 张杰

引用本文:
Citation:

对美国国家点火装置2010年以来实验设计思路的分析

张棋, 马积瑞, 范金燕, 张杰

Analysis of design principles of the experiments on the National Ignition Facility since 2010

Zhang Qi, Ma Ji-Rui, Fan Jin-Yan, Zhang Jie
PDF
HTML
导出引用
  • 美国国家点火装置(NIF)自2010年投入使用以来, 已经进行了约1030发次的惯性约束聚变研究实验. 在经历了最初7年多的艰难探索之后, 自2017年以来, 激光聚变反应输出能量接连突破55 kJ和170 kJ, 特别是在2021年8月的实验中, NIF研究团队获得了1.35MJ聚变输出能量的结果, 已经接近实现靶点火(target ignition)的门槛. NIF实验数据具有极高的分析价值, 近些年来NIF研究团队已经将这些数据用于进一步实验的优化设计、预测产额、矫正模拟等目的. 由于NIF实验数据库中大量数据未被公开, 我国科研工作者只能从少量已公开数据中了解其实验历程, 无法深入分析各阶段NIF实验及各时间节点NIF团队对下一阶段实验设计思路的来源. 本文根据NIF实验数据的特点, 采用预测平均匹配方法和信赖域方法对NIF实验缺失数据进行了数据还原研究, 并且对还原数据进行了可靠性验证. 利用还原数据, 本文分析了过去十年间不同阶段NIF实验的不同侧重点以及设计思路, 并且利用机器学习方法预测了未来NIF实验中的热斑压强. 这些结果为我国科研工作者持续跟进并深入理解最新NIF实验结果提供了一种可行的方法, 也可以对我国激光聚变点火实验的设计起到借鉴作用.
    Since completion of the National Ignition Facility (NIF) in 2010, more than 1030 experiments were carried out to achieve ignition. Though the experiments were unsuccessful in the first 8 years, the NIF has improved the experimental designs and achieved fusion yields from 55kJ, 170kJ to 1.35MJ since 2019, approaching to the ignition milestone. The designs are based on the experimental database, which has been widely used for optimization design, yield prediction, corrected simulation, etc. However, so far the published experimental data is very limited. Also, it is difficult to obtain a completion data matrix for analyzing and understanding the experimental designs of NIF experiments at each stage and to know how the NIF sets strategic priorities for each phase.In this paper, we proposed an optimization method, which combines the PMM algorithm and trust region algorithm, to restore the missing NIF experimental data. Based on the completed data, the design principles of experiments on the NIF were analyzed, and the hot spot pressure was predicted by machine learning algorithms. The results may be helpful for the designs of laser fusion ignition experiments in China.
      通信作者: 张杰, jzhang@iphy.ac.cn
    • 基金项目: 中国科学院战略性科技先导专项(批准号: XDA25010100)和国家自然科学基金(批准号: 11971309)资助的课题.
      Corresponding author: Zhang Jie, jzhang@iphy.ac.cn
    • Funds: Project supported by the Priority Research Program of the Chinese Academy of Sciences, China (Grant No. XDA25010100) and the National Natural Science Foundation of China (Grant No. 11971309)
    [1]

    Zylstra A B, Kritcher A L, Callahan D A, Ralph J E, Some basic principles of ICF and some recent burning plasma results, 2021 LLNL-PRES-825381

    [2]

    Kritcher A L, Initial results from the HYBRID-E DT experiment N210808 with >1.3 MJ yield, 2021 LLNL-PRES-826367

    [3]

    Ross J S, Ralph J E, Zylstra A B, Kritcher A L, Robey H F 2021 arXiv: 2111.04640 [physics. plasma-ph]

    [4]

    Zylstra A B, Hurricane O A, Callahan D A, Kritcher A L, Ralph J E 2022 Nature 601 542Google Scholar

    [5]

    Pape L S, Hopkins L B, Divol L, Pak A, Dewald E L 2018 Phys. Rev. Lett. 120 245003Google Scholar

    [6]

    Kritcher A L, Zylstra A B, Callahan D A, Hurricane O A, Weber C 2021 Phys. Plasma 28 072706Google Scholar

    [7]

    Hatfield P W, Rose S J, Scott R 2019 Phys. Plasma 26 062706Google Scholar

    [8]

    Hatfield P W, Rose S J, Scott R 2019 IEEE Trans. Plasma Sci. 60 1.22Google Scholar

    [9]

    Gaffnev J A, Brandon S T, Humbird K D, Kruse K G, Nora R C, Peterson J L, Spears B K 2019 Phys. Plasma 26 082704Google Scholar

    [10]

    Humbird K D, Peterson J L, McClarren R G 2018 preprint arXiv: 1812.06055

    [11]

    Humbird K D, Peterson J L, Salmonson J, Spears B K 2021 Phys. Plasma 28 042709Google Scholar

    [12]

    Hsu A, Cheng B, Bradley P A 2020 Phys. Plasma 27 012703Google Scholar

    [13]

    Glenzer S H, Brian K S, Edwards M J, Alger E T, Berger R L 2012 Plasma Phys. Control. Fusion 54 045013Google Scholar

    [14]

    Regan S P, Epstein R, Hammel B A, Suter L J, Ralph, Scott H 2012 Phys. Plasma 19 056307Google Scholar

    [15]

    Glenzer S H, Callahan D A, MacKinnon A J, Kline J K, Grim G 2012 Phys. Plasma 19 056318Google Scholar

    [16]

    Robey H F, McGowan B J, Landen O L, LaFortune K N, Widmayer C 2013 Phys. Plasma 20 052707Google Scholar

    [17]

    Callahan D A, Hurricane O A, Ralph J E, Thomas C A, Baker K L 2018 Phys. Plasma 25 056305Google Scholar

    [18]

    Lawson J D 1957 Proc. Phys. Soc. Sect. B 70 6Google Scholar

    [19]

    Hicks D G, Meezan N B, Dewald E L, Mackinnon A J, Olson R E 2012 Phys. Plasma 19 122702Google Scholar

    [20]

    Lindl J, Landen O, Edwards J, Moses E 2014 Phys. Plasma 21 020501Google Scholar

    [21]

    Park H S, Hurricane O A, Callahan D A, Casey D T, Dewald E L 2014 Phys. Rev. Lett. 112 055001Google Scholar

    [22]

    Casey D T, Thomas C A, Baser K L, Spears B K, Hohenberger M 2018 Phys. Plasma 25 056308Google Scholar

    [23]

    Zylstra A B, Casey D T, Kritcher A, Pickworth L, Bachmann B 2020 Phys. Plasma 27 092709Google Scholar

    [24]

    Hohenberger M, Casey D T, Kritcher A L, Pak A, Zylstra A B 2020 Phys. Plasma 27 112704Google Scholar

    [25]

    Robey H F, Hopkins L B, Milovich J L, Meezan N B 2018 Phys. Plasma 25 012711Google Scholar

    [26]

    Hopkins L B, LePape S, Divol L, Pak A, Edwald E, Ho D D 2019 Plasma Phys. Control. Fusion 61 014023Google Scholar

    [27]

    Zylstra A B, MacLaren S, Kline S A Yi J, Callahan D, Hurricane O 2019 Phys. Plasma 26 052707Google Scholar

    [28]

    Hohenberger M, Casey D T, Thomas C A, Landen O L, Baker K L 2019 Phys. Plasma 26 112707Google Scholar

    [29]

    Kritcher A L, Casey D T, Thomas C A, Zylstra A B, Hohenberger M 2020 Phys. Plasma 27 052710Google Scholar

    [30]

    Kritcher A L, Zylstra A B, Callahan D A, Hurricane O A, Weber C 2021 Physics of Plasmas 28 072706

    [31]

    Kritcher A L, Young C V, Robey H F, Weber C R, Zylstra A B 2022 Nat. Phys. 18 251Google Scholar

    [32]

    Hurricane O A, Callahan D A, Springer P T, Edwards M J, Patel P 2019 Plasma Phys. Control. Fusion 61 014033Google Scholar

    [33]

    Rubin D B 1986 J. Bus. Econom. Statist. 4 87Google Scholar

    [34]

    Little R J A 1988 J. Bus. Econom. Statist. 6 287Google Scholar

    [35]

    Buuren S 2018 Flexible Imputation of Missing Data Second Edition (Boca Raton: CRC Press/Taylor & Francis) p77

    [36]

    Yuan Ya-xiang 2015 Math. Program. 151 249Google Scholar

    [37]

    Landen O L, Casey D T, DiNicola J M, Doeppner T, Hartouni E P 2020 High Energy Density Phys. 36 100755Google Scholar

    [38]

    Laser Indirect Drive input to NNSA 2020 Report, 2020 LLNL-TR-810573

    [39]

    Robey HF, Celliers P M, Kline J L, Mackinnon A J, Boehly T R 2012 Phys. Rev. Lett. 108 215004Google Scholar

    [40]

    Robey H F, Boehly T R, Celliers P M, Eqqert J H, Hicks D 2012 Phys. Plasma 19 042706Google Scholar

    [41]

    Review of BigFoot Implosion Data at NIF, Baker K L, Casey D T, Hohenberger M, Kritcher A L, Spears B Khttps://www.lle.rochester.edu/media/publications/presentations/documents/APS19/Thomas_APS19.pdf [2022-02-14]

  • 图 1  NIF各方案已公布的各方案年度发次数与年度总发次数

    Fig. 1.  The numbers of NIF shots in various designs and the numbers of annual total shots.

    图 2  4组变量的交叉验证结果 (a)中子产额; (b)内爆速度; (c)热斑压强; (d)靶丸规模

    Fig. 2.  Cross-validation results of 4 groups of variables: (a) Fusion yield; (b) implosion velocity; (c) hos-spot pressure; (d) spatial scale factor.

    图 3  NIF间接点火4个阶段中子产额、内爆速度、热斑压强的变化过程 (a) NIC和LF实验阶段; (b)新增HF实验阶段数据; (c) 新增HDC, BF实验阶段数据; (d)新增Hybrid实验阶段数据

    Fig. 3.  NIF indirect drive implosion data are plotted in the space of the implosion velocity, the hot-spot pressure, and fusion yield. The various designs are added to subgraph the in turn: (a) The low-foot/NIC implosions; (b) the high-foot implosions; (c) the high-density-carbon designs and the Bigfoot designs; (d) the high yield big radius implosion designs.

    图 4  使用机器学习方法预测热斑压强 (a) 基于2010—2017数据的预测结果; (b) 基于2010—2021数据的预测结果

    Fig. 4.  Prediction of hot-spot pressure using machine learning methods: (a) Prediction based on data from 2010 to 2017; (b) prediction based on data from 2010 to 2021.

    表 1  213组数据的变量缺失情况与还原需求

    Table 1.  Missing data classification and imputation needs

    数据情况完整数据组可还原数据组未还原数据组
    缺失变量/个012344或5
    数据/组211914334122
    下载: 导出CSV

    表 A1  原始数据及还原结果(其中上标*的数据为还原所得数据)

    Table A1.  Restoring the original data(the data marked with * is the data obtained from the restoration).

    发次号发次类别αPhs/Gbarvimp/(km·s–1)SYtotal(1015)年份填补数据量
    N110914Velocity1.61163551.0020.5820110
    N111215Shape1.61033121.0220.8520110
    N120205LF2.71053101.0040.59320110
    N120321LF1.61563210.9180.53620120
    N120405LF1.41453241.1370.1420120
    N130927DTHF3 shock2.71403341.0605.120120
    N131119DTHF2.21233521.0535.9820130
    N140120DTHF-CH2.51523560.9389.2520130
    N140520DTHF-HGF-CH2.41523670.9488.9820140
    N141123DTHFAS1.61533200.9261.3720140
    N150115DTHFAS2.31683350.9313.7720140
    N150121DTHF CH2.22193770.9486.2620150
    N161030DTHDCS8BF4.01613900.8441.8720150
    N170109DTHDCS8BF4.02204110.8442.6320160
    N170601HDC2.43203810.9101720170
    N170827DTHDCS92.33603950.91016.620170
    N191117672S9HF2.72803700.8414.9920170
    N201001Hybrid-E3.02843831.05034.920200
    N201122I-raum3.22603761.00037.720200
    N210207Hybrid-E3.03143891.05060.720210
    N210220I-raum3.12813691.0005720210
    N130501DTHF2.0692971.002*0.76720191
    N130710DTHF2.1*593371.0021.220131
    N130812DTHF2.7983251.002*2.78520131
    N140225DTHF2.2*1413340.9382.820131
    N140304DTHF2.71163641.103*9.2820131
    N140707DTHF2.3*1653500.938520141
    N140819DTHF2.72953900.805*5.4720141
    N150416DTHFAS2.3210325*0.9308.4620141
    N171022DTHDCS8BF2.22803730.867*5.8520141
    N171210DT672S9HF2.22303690.886*3.6820151
    N180128DTHDCS9BF3.93114320.839*1920171
    N180204DT672S9HF2.22503850.880*4.1220171
    N190415DT672S9HF2.2221*3750.8414.3720181
    N190422DT672S9HF2.7169*3640.8412.4420181
    N190527DT672S9HF2.5224*3880.8414.7220191
    N190602DT672S9HF2.5217*3780.8414.2520191
    N190918Hybrid-E2.7*1403741.1007.520191
    N191007Hybrid-E2.8*2063741.10018.820191
    N191110Hybrid(HDC)-E2.32733661.0282020191
    N131219DTHF2.5*1203481.117*3.220212
    N140311DTHF2.8*1403721.128*6.0620142
    N160418DTHDCS82.6*176*3780.8452.8620132
    N170328DT672S9HF2.6*2403850.897*5.8320142
    N170524DTHDCS9BF3.1*186*4130.9506.220162
    N170813DT672S9HF2.6*2553850.875*5.7220172
    N180429Hybrid-B2.5*218*3650.9999.520172
    N180618DTBe672S8HF2.3*2203650.776*1.420172
    N180708Hybrid-B2.3*183*3461.0005.220182
    N181007Hybrid-B2.6*194*3721.0509.120212
    N181203Hybrid-B2.8*186*3931.0508.120182
    N181209Hybrid-B2.6*158*3701.0996.320182
    N190203Hybrid-B2.2 *151*3591.0504.420182
    N190318Hybrid-B2.5*168*3671.0997.820182
    N110121Commsissioning1.0*55*363*0.0210.0220183
    N110201Commsissioning2.4*145*334*1.0040.1120193
    N110212Commsissioning1.2*37*244*1.0040.1320193
    N110603Shock timing1.2*50*260*1.0040.06520113
    N110608Shock timing1.8*84*293*1.0040.1920113
    N110615Shock timing2.0*103*308*1.0040.4320113
    N110620Shock timing2.4*228*372*1.0040.4220113
    N110804Velocity1.3*56*267*1.0020.004820113
    N110826Velocity1.6*73*284*1.0020.1720113
    N110904Velocity2.2*124*322*1.0020.4620113
    N110908Velocity2.2*128*324*1.0020.5920113
    N111029Shape1.5*63*274*1.0020.00920113
    N111103Shape2.0*99*305*1.0020.2320113
    N111112Shape2.5*172*348*1.0020.620113
    N120311LF1.8*100*3180.827*0.15920113
    N120316LF1.8*116*3160.838*0.27520113
    N120417LF1.8*140*3140.847*0.53220113
    N120626LF1.8*91*3140.829*0.11820113
    N160207DTHDCS8BF1.3*80*2960.8440.1820123
    N160411DTHDCS81.9*141*3070.8450.62*20123
    N170702SymcapHDCS92.6*55*3590.801*0.220123
    N171015DTHDCS9BF3.2*192*4190.953*8.120123
    N171029DTHDCS9BF3.4*201*4360.969*1020163
    N171112SymcapDTHDCS8BF1.8*112*3070.902*0.720163
    N171119DTHDCS9BF3.4*206*4330.977*1120173
    N171218DTHDCS92.9*285*4080.9871720173
    N180121DTBe672S8HF2.1*113*3280.8180.820173
    N180218DTHDCS93.1*249*4220.99011.7920173
    N180226DTHDCS9BF2.9*241*4040.9791020173
    N180909DT672S9HF3.2*262*4271.0021420173
    N180930DT672S9HF3.5*259*4511.004*1520183
    N181104Hybrid2.6*207*412*1.05010.120183
    N190721DTHDCS8BF2.9*249*4040.988*1120183
    N121125SymcapLF1.4*74*250*0.954*0.2520184
    N130530DTHF2*105*298*1.007*0.6520184
    N130802DTHF1.8*91*296*0.984*0.5320184
    N170821DTHDCS92.8*210*374*1.009*8.720194
    下载: 导出CSV
  • [1]

    Zylstra A B, Kritcher A L, Callahan D A, Ralph J E, Some basic principles of ICF and some recent burning plasma results, 2021 LLNL-PRES-825381

    [2]

    Kritcher A L, Initial results from the HYBRID-E DT experiment N210808 with >1.3 MJ yield, 2021 LLNL-PRES-826367

    [3]

    Ross J S, Ralph J E, Zylstra A B, Kritcher A L, Robey H F 2021 arXiv: 2111.04640 [physics. plasma-ph]

    [4]

    Zylstra A B, Hurricane O A, Callahan D A, Kritcher A L, Ralph J E 2022 Nature 601 542Google Scholar

    [5]

    Pape L S, Hopkins L B, Divol L, Pak A, Dewald E L 2018 Phys. Rev. Lett. 120 245003Google Scholar

    [6]

    Kritcher A L, Zylstra A B, Callahan D A, Hurricane O A, Weber C 2021 Phys. Plasma 28 072706Google Scholar

    [7]

    Hatfield P W, Rose S J, Scott R 2019 Phys. Plasma 26 062706Google Scholar

    [8]

    Hatfield P W, Rose S J, Scott R 2019 IEEE Trans. Plasma Sci. 60 1.22Google Scholar

    [9]

    Gaffnev J A, Brandon S T, Humbird K D, Kruse K G, Nora R C, Peterson J L, Spears B K 2019 Phys. Plasma 26 082704Google Scholar

    [10]

    Humbird K D, Peterson J L, McClarren R G 2018 preprint arXiv: 1812.06055

    [11]

    Humbird K D, Peterson J L, Salmonson J, Spears B K 2021 Phys. Plasma 28 042709Google Scholar

    [12]

    Hsu A, Cheng B, Bradley P A 2020 Phys. Plasma 27 012703Google Scholar

    [13]

    Glenzer S H, Brian K S, Edwards M J, Alger E T, Berger R L 2012 Plasma Phys. Control. Fusion 54 045013Google Scholar

    [14]

    Regan S P, Epstein R, Hammel B A, Suter L J, Ralph, Scott H 2012 Phys. Plasma 19 056307Google Scholar

    [15]

    Glenzer S H, Callahan D A, MacKinnon A J, Kline J K, Grim G 2012 Phys. Plasma 19 056318Google Scholar

    [16]

    Robey H F, McGowan B J, Landen O L, LaFortune K N, Widmayer C 2013 Phys. Plasma 20 052707Google Scholar

    [17]

    Callahan D A, Hurricane O A, Ralph J E, Thomas C A, Baker K L 2018 Phys. Plasma 25 056305Google Scholar

    [18]

    Lawson J D 1957 Proc. Phys. Soc. Sect. B 70 6Google Scholar

    [19]

    Hicks D G, Meezan N B, Dewald E L, Mackinnon A J, Olson R E 2012 Phys. Plasma 19 122702Google Scholar

    [20]

    Lindl J, Landen O, Edwards J, Moses E 2014 Phys. Plasma 21 020501Google Scholar

    [21]

    Park H S, Hurricane O A, Callahan D A, Casey D T, Dewald E L 2014 Phys. Rev. Lett. 112 055001Google Scholar

    [22]

    Casey D T, Thomas C A, Baser K L, Spears B K, Hohenberger M 2018 Phys. Plasma 25 056308Google Scholar

    [23]

    Zylstra A B, Casey D T, Kritcher A, Pickworth L, Bachmann B 2020 Phys. Plasma 27 092709Google Scholar

    [24]

    Hohenberger M, Casey D T, Kritcher A L, Pak A, Zylstra A B 2020 Phys. Plasma 27 112704Google Scholar

    [25]

    Robey H F, Hopkins L B, Milovich J L, Meezan N B 2018 Phys. Plasma 25 012711Google Scholar

    [26]

    Hopkins L B, LePape S, Divol L, Pak A, Edwald E, Ho D D 2019 Plasma Phys. Control. Fusion 61 014023Google Scholar

    [27]

    Zylstra A B, MacLaren S, Kline S A Yi J, Callahan D, Hurricane O 2019 Phys. Plasma 26 052707Google Scholar

    [28]

    Hohenberger M, Casey D T, Thomas C A, Landen O L, Baker K L 2019 Phys. Plasma 26 112707Google Scholar

    [29]

    Kritcher A L, Casey D T, Thomas C A, Zylstra A B, Hohenberger M 2020 Phys. Plasma 27 052710Google Scholar

    [30]

    Kritcher A L, Zylstra A B, Callahan D A, Hurricane O A, Weber C 2021 Physics of Plasmas 28 072706

    [31]

    Kritcher A L, Young C V, Robey H F, Weber C R, Zylstra A B 2022 Nat. Phys. 18 251Google Scholar

    [32]

    Hurricane O A, Callahan D A, Springer P T, Edwards M J, Patel P 2019 Plasma Phys. Control. Fusion 61 014033Google Scholar

    [33]

    Rubin D B 1986 J. Bus. Econom. Statist. 4 87Google Scholar

    [34]

    Little R J A 1988 J. Bus. Econom. Statist. 6 287Google Scholar

    [35]

    Buuren S 2018 Flexible Imputation of Missing Data Second Edition (Boca Raton: CRC Press/Taylor & Francis) p77

    [36]

    Yuan Ya-xiang 2015 Math. Program. 151 249Google Scholar

    [37]

    Landen O L, Casey D T, DiNicola J M, Doeppner T, Hartouni E P 2020 High Energy Density Phys. 36 100755Google Scholar

    [38]

    Laser Indirect Drive input to NNSA 2020 Report, 2020 LLNL-TR-810573

    [39]

    Robey HF, Celliers P M, Kline J L, Mackinnon A J, Boehly T R 2012 Phys. Rev. Lett. 108 215004Google Scholar

    [40]

    Robey H F, Boehly T R, Celliers P M, Eqqert J H, Hicks D 2012 Phys. Plasma 19 042706Google Scholar

    [41]

    Review of BigFoot Implosion Data at NIF, Baker K L, Casey D T, Hohenberger M, Kritcher A L, Spears B Khttps://www.lle.rochester.edu/media/publications/presentations/documents/APS19/Thomas_APS19.pdf [2022-02-14]

  • [1] 李树, 王旸, 姬志成, 蓝可. 高温热辐射输运模拟的蒙特卡罗全局降方差方法. 物理学报, 2023, 72(13): 139501. doi: 10.7498/aps.72.20230218
    [2] 黄天晅, 吴畅书, 陈忠靖, 晏骥, 李欣, 葛峰峻, 张兴, 蒋炜, 邓博, 侯立飞, 蒲昱东, 董云松, 王立锋. 在间接驱动内爆实验中采用花生腔增强对称性调控. 物理学报, 2023, 72(2): 025201. doi: 10.7498/aps.72.20220861
    [3] 熊皓, 钟哲强, 张彬, 隋展, 张小民. 基于束间动态干涉的快速匀滑新方法. 物理学报, 2020, 69(6): 064206. doi: 10.7498/aps.69.20190962
    [4] 杨钧兰, 钟哲强, 翁小凤, 张彬. 惯性约束聚变装置中靶面光场特性的统计表征方法. 物理学报, 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [5] 肖德龙, 戴自换, 孙顺凯, 丁宁, 张扬, 邬吉明, 尹丽, 束小建. Z箍缩动态黑腔驱动靶丸内爆动力学. 物理学报, 2018, 67(2): 025203. doi: 10.7498/aps.67.20171640
    [6] 李宏勋, 张锐, 朱娜, 田小程, 许党朋, 周丹丹, 宗兆玉, 范孟秋, 谢亮华, 郑天然, 李钊历. 基于光束参量优化实现直接驱动靶丸均匀辐照. 物理学报, 2017, 66(10): 105202. doi: 10.7498/aps.66.105202
    [7] 邓学伟, 周维, 袁强, 代万俊, 胡东霞, 朱启华, 景峰. 甚多束激光直接驱动靶面辐照均匀性研究. 物理学报, 2015, 64(19): 195203. doi: 10.7498/aps.64.195203
    [8] 赵英奎, 欧阳碧耀, 文武, 王敏. 惯性约束聚变中氘氚燃料整体点火与燃烧条件研究. 物理学报, 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [9] 宁成, 丰志兴, 薛创. Z箍缩驱动动态黑腔中的基本能量转移特征. 物理学报, 2014, 63(12): 125208. doi: 10.7498/aps.63.125208
    [10] 李树, 李刚, 田东风, 邓力. 热辐射输运问题的隐式蒙特卡罗方法求解. 物理学报, 2013, 62(24): 249501. doi: 10.7498/aps.62.249501
    [11] 晏骥, 江少恩, 苏明, 巫顺超, 林稚伟. X射线相衬成像应用于惯性约束核聚变多层球壳靶丸检测. 物理学报, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [12] 张占文, 漆小波, 李波. 惯性约束聚变点火靶候选靶丸特点及制备研究进展. 物理学报, 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [13] 占江徽, 姚欣, 高福华, 阳泽健, 张怡霄, 郭永康. 惯性约束聚变驱动器连续相位板前置时频率转换晶体内部光场研究. 物理学报, 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [14] 张锐, 王建军, 粟敬钦, 刘兰琴, 邓青华. 基于线性调频脉冲的光谱色散平滑技术实验研究. 物理学报, 2010, 59(2): 1088-1094. doi: 10.7498/aps.59.1088
    [15] 程文雍, 张小民, 粟敬钦, 赵圣之, 董军, 李平, 周丽丹. 利用运动光束抑制高功率激光小尺度自聚焦. 物理学报, 2009, 58(10): 7012-7016. doi: 10.7498/aps.58.7012
    [16] 姚欣, 高福华, 高博, 张怡霄, 黄利新, 郭永康, 林祥棣. 惯性约束聚变驱动器终端束匀滑器件前置时频率转换系统优化研究. 物理学报, 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [17] 姚欣, 高福华, 张怡霄, 温圣林, 郭永康, 林祥棣. 激光惯性约束聚变驱动器终端光学系统中束匀滑器件前置的条件研究. 物理学报, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [18] 姚 欣, 高福华, 李剑峰, 张怡霄, 温圣林, 郭永康. 光束取样光栅强激光近场调制及诱导损伤研究. 物理学报, 2008, 57(8): 4891-4897. doi: 10.7498/aps.57.4891
    [19] 姚 欣, 高福华, 温圣林, 张怡霄, 李剑峰, 郭永康. 谐波分离和光束取样集成光学元件强激光近场调制及损伤特性研究. 物理学报, 2007, 56(12): 6945-6953. doi: 10.7498/aps.56.6945
    [20] 杨洪琼, 杨建伦, 温树槐, 王根兴, 郭玉芝, 唐正元, 牟维兵, 马驰. 激光直接驱动内爆DT燃料面密度诊断. 物理学报, 2001, 50(12): 2408-2412. doi: 10.7498/aps.50.2408
计量
  • 文章访问数:  5922
  • PDF下载量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-27
  • 修回日期:  2022-02-26
  • 上网日期:  2022-06-26
  • 刊出日期:  2022-07-05

/

返回文章
返回