搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紧聚焦角向矢量光激发下硅环-开口金环纳米天线的单向散射

张汉谋 肖发俊 赵建林

引用本文:
Citation:

紧聚焦角向矢量光激发下硅环-开口金环纳米天线的单向散射

张汉谋, 肖发俊, 赵建林

Unidirectional scattering of Si ring-Au split ring nanoantenna excited by tightly focused azimuthally polarized beam

Zhang Han-Mou, Xiao Fa-Jun, Zhao Jian-Lin
PDF
HTML
导出引用
  • 采用时域有限差分法, 数值研究了紧聚焦角向矢量光激发下硅环-开口金环纳米天线的远场散射特性. 结果表明: 紧聚焦的角向矢量光可在硅纳米环和开口金纳米环中分别激发出不同峰宽的磁偶极模式; 由于模式间的杂化效应, 两种磁偶极模式会耦合形成硅环-开口金环纳米结构的反键和成键模式; 在峰谷1064 nm波长处, 反键和成键模式间的相消干涉在面内形成了单向远场散射. 进一步, 详细研究了几何参数对单向散射的影响, 并且借助该纳米天线的单向散射特性, 实现了偶极光源的定向发射. 研究结果提供了一种纳米光子结构远场散射的灵活调控手段, 并有望为纳米光源、光学传感器等的设计和研发提供有益的参考.
    Unidirectional scattering of various plasmonic nanoantennas has been extensively studied, giving birth to applications such as in optical sensors, solar cells, spectroscopy and light-emitting devices. The directional scattering of magnetic nanoantenna is still unexplored, though it is beneficial to artificial magnetism applications including metamaterials, cloaking and nonlinear optical resonance. In this work, we numerically investigate the far-field scattering properties of the Si ring-Au split ring nanoantenna (Si R-Au SRN) excited by a tightly focused azimuthally polarized beam (APB) through using the finite-difference time-domain (FDTD) method. The results show that the magnetic resonant peaks with different widths can be deterministically excited in Si ring and Au split ring by tightly focusing APB. Owing to the plasmon hybridization effect, the two magnetic resonant modes form antibonding mode and bonding mode in the Si R-Au SRN. At a wavelength of λ=1064 nm, the destructive interference between the antibonding mode and bonding mode of nanostructure results in unidirectional far-field scattering in the transverse plane, which is affected dramatically by changes of geometrical parameters. Furthermore, the directional scattering of a dipole source is realized by the designed nanostructure, and its scattering directionality is superior to that excited with APB. Our work provides a flexible way to control the far-field scattering of nano-photon structures. We expect that this study can provide an avenue to the nano-light sources and optical sensors.
      通信作者: 肖发俊, fjxiao@nwpu.edu.cn ; 赵建林, jlzhao@nwpu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0303800)、国家自然科学基金(批准号: 11634010, 11874050)、陕西省重点研发项目(批准号: 2021KW-19)和中央高校基本科研业务费(批准号: 3102019JC008, D5000210936)资助的课题.
      Corresponding author: Xiao Fa-Jun, fjxiao@nwpu.edu.cn ; Zhao Jian-Lin, jlzhao@nwpu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303800), the National Natural Science Foundation of China (Grant Nos. 11634010, 11874050), the Shaanxi Provincial Key R&D Program, China (Grant No. 2021KW-19), and the Fundamental Research Fund for the Central Universities, China (Grant Nos. 3102019JC008, D5000210936).
    [1]

    Engheta N 2011 Science 334 317Google Scholar

    [2]

    Taminiau T H, Stefani F D, Segerink F B, van Hulst N F 2008 Nat. Photonics 2 234Google Scholar

    [3]

    Ahmed A, Gordon R 2012 Nano Lett. 12 2625Google Scholar

    [4]

    Ahmed A, Pang Y, Hajisalem G, Gordon R 2012 Int. J. Opt. 2012 729138

    [5]

    Ou Y C, Webb J A, Faley S, Shae D, Talbert E M, Lin S, Cutright C C, Wilson J T, Bellan L M, Bardhan R 2016 ACS Omega 1 234Google Scholar

    [6]

    Atwater H A, Polman A 2010 Nat. Mater. 9 205Google Scholar

    [7]

    Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P 2008 Nat. Mater. 7 442Google Scholar

    [8]

    Bharadwaj P, Deutsch B, Novotny L 2009 Adv. Opt. Photonics 1 438Google Scholar

    [9]

    蒋双凤, 孔凡敏, 李康, 高辉 2011 物理学报 60 045203Google Scholar

    Jiang S F, Kong F M, Li K, Gao H 2011 Acta Phys. Sin. 60 045203Google Scholar

    [10]

    Maksymov I S, Staude I, Miroshnichenko A E, Kivshar Y S 2012 Nanophotonics 1 65Google Scholar

    [11]

    Guo R, Decker M, Setzpfandt F, Staude I, Neshev D N, Kivshar Y S 2015 Nano Lett. 15 3324Google Scholar

    [12]

    Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R, van Hulst N F 2010 Science 329 930Google Scholar

    [13]

    Vercruysse D, Sonnefraud Y, Verellen N, Fuchs F B, Di Martino G, Lagae L, Moshchalkov V V, Maier S A, Van Dorpe P 2013 Nano Lett. 13 3843Google Scholar

    [14]

    Hancu I M, Curto A G, Castro-Lopez M, Kuttge M, van Hulst N F 2014 Nano Lett. 14 166Google Scholar

    [15]

    Kerker M, Wang D S, Giles C L 1983 J. Opt. Soc. Am. 73 765Google Scholar

    [16]

    Geffrin J M, Garcia-Camara B, Gomez-Medina R, Albella P, Froufe-Perez L S, Eyraud C, Litman A, Vaillon R, Gonzalez F, Nieto-Vesperinas M, Saenz J J, Moreno F 2012 Nat. Commun. 3 1171Google Scholar

    [17]

    Fu Y H, Kuznetsov A I, Miroshnichenko A E, Yu Y F, Luk'yanchuk B 2013 Nat. Commun. 4 1527Google Scholar

    [18]

    Person S, Jain M, Lapin Z, Saenz J J, Wicks G, Novotny L 2013 Nano Lett. 13 1806Google Scholar

    [19]

    Ma C, Yan J, Huang Y, Yang G 2017 Adv. Opt. Mater. 5 1700761Google Scholar

    [20]

    Neugebauer M, Woźniak P, Bag A, Leuchs G, Banzer P 2016 Nat. Commun. 7 11286Google Scholar

    [21]

    Nechayev S, Eismann J S, Neugebauer M, Woźniak P, Bag A, Leuchs G, Banzer P 2019 Phys. Rev. A 99 041801Google Scholar

    [22]

    Bag A, Neugebauer M, Wozniak P, Leuchs G, Banzer P 2018 Phys. Rev. Lett. 121 193902Google Scholar

    [23]

    Bag A, Neugebauer M, Mick U, Christiansen S, Schulz S A, Banzer P 2020 Nat. Commun. 11 2915Google Scholar

    [24]

    Linden S, Enkrich C, Wegener M, Zhou J F, Koschny T, Soukoulis C M 2004 Science 306 1351Google Scholar

    [25]

    张富利, 赵晓鹏 2007 物理学报 56 4661Google Scholar

    Zhang F L, Zhao X P 2007 Acta Phys. Sin. 56 4661Google Scholar

    [26]

    Liu H, Genov D A, Wu D M, Liu Y M, Liu Z W, Sun C, Zhu S N, Zhang X 2007 Phys. Rev. B 76 073101Google Scholar

    [27]

    Guo H C, Liu N, Fu L W, Meyrath T P, Zentgraf T, Schweizer H, Giessen H 2007 Opt. Express 15 12095Google Scholar

    [28]

    Liu N, Kaiser S, Giessen H 2008 Adv. Mater. 20 4521Google Scholar

    [29]

    Yang Z J, Zhang Z S, Hao Z H, Wang Q Q 2012 Opt. Lett. 37 3675Google Scholar

    [30]

    Ye J, Kong Y, Liu C 2016 J. Phys. D:Appl. Phys. 49 205106Google Scholar

    [31]

    Zhang D, Xiang J, Liu H F, Deng F, Liu H Y, Ouyang M, Fan H H, Dai Q F 2017 Opt. Express 25 26704Google Scholar

    [32]

    Bao Y J, Hu Z J, Li Z W, Zhu X, Fang Z Y 2015 Small 11 2177Google Scholar

    [33]

    Shegai T, Chen S, Miljkovic V D, Zengin G, Johansson P, Kall M 2011 Nat. Commun. 2 481Google Scholar

    [34]

    Youngworth K, Brown T 2000 Opt. Express 7 77Google Scholar

    [35]

    Palik E D 1991 Handbook of Optical Constants of Solids (Boston: Academic Press)

    [36]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [37]

    Woźniak P, Banzer P, Leuchs G 2015 Laser Photonics Rev. 9 231Google Scholar

    [38]

    Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419Google Scholar

    [39]

    Lovera A, Gallinet B, Nordlander P, Martin O J 2013 ACS Nano 7 4527Google Scholar

    [40]

    Shang W Y, Xiao F J, Zhu W R, He H S, Premaratne M, Mei T, Zhao J L 2017 Sci. Rep. 7 1049Google Scholar

    [41]

    Yang Z J, Zhao Q, He J 2017 Opt. Express 25 15927Google Scholar

  • 图 1  (a)三维和(b)二维直角坐标系中硅环-开口金环纳米天线结构及几何参数示意图

    Fig. 1.  Schematic diagrams of Si R-Au SR nanoantenna with the geometrical parameters in (a) three-dimensional (3D) and (b) two-dimensional (2D) Cartesian coordinate systems.

    图 2  紧聚焦角向矢量光在焦平面上(z = 0 nm)的电场和磁场分布 (a)电场(黑色箭头表示电场的偏振分布); (b)总磁场; (c)磁场面内分量(|Ht| = (|Hx|2+|Hy|2)1/2); (d)磁场纵向分量. 白色虚线区域给出焦场中纳米结构的所在位置

    Fig. 2.  Distributions of electric and magnetic fields at focal plane for tightly focused APB: (a) Electric field; (b) magnetic field; (c) in-plane component of magnetic field; (d) longitudinal component of magnetic field. The black arrows represent the distribution of polarization and white dot line regions denote the nano-structure.

    图 3  紧聚焦角向矢量光激发下的(a)硅纳米环和(d)开口金纳米环的散射光谱, (b)硅纳米环和(e)开口金纳米环上表面(z = 50 nm)的磁场纵向分量(Hz)分布(箭头表示电流密度分布), 以及(c)硅纳米环及(f)开口金纳米环的远场散射分布

    Fig. 3.  Scattering spectra of (a) Si ring and (d) Au split ring excited by tightly focused APB, magnetic field distributions of the upper surface (z = 50 nm) for (b) Si ring and (e) Au split ring at their resonant peaks (the current density distributions denoted by the black arrows), and far-field scattering patterns of (c) Si ring and (f) Au split ring, respectively.

    图 4  (a) 硅环-开口金环纳米结构的模拟(红线)和拟合的散射谱(蓝色虚线); (b) 波长790, (c) 1200和(d) 1064 nm处, 结构上表面(z = 50 nm)的磁场纵向分量(Hz)分布(箭头表示电流密度分布)

    Fig. 4.  (a) Calculated (red line) and fitted scattering spectra (blue dashed line) of the nanostructure. Magnetic field distributions of upper surface (z = 50 nm) for nano-structure at (b) 790, (c) 1200 and (d) 1064 nm, respectively (the white or black arrows represent the current density distributions).

    图 5  紧聚焦角向光束激发下硅环-开口金环纳米结构在 (a)反键模式、(b)成键模式处, 以及(c)模式间的峰谷(λ = 1064 nm)的三维远场散射分布

    Fig. 5.  3D far-field scattering patterns of Si R-Au SRN at (a) the anti-bonding mode, (b) the bonding mode, and (c) λ = 1064 nm.

    图 6  硅环-开口金环纳米结构反键与成键模式的(a)振幅比和(b)相位差随波长的变化

    Fig. 6.  (a) Amplitude ratio and (b) phase difference of the two modes as a function of the wavelength for the Si R-Au SRN.

    图 7  硅环-开口金环纳米结构在λ = 1064 nm的紧聚焦角向矢量光激发下, (a)硅环宽度w1和(b)两环心间距d取不同值时, xy平面上的二维远场散射分布. 纳米结构的反键和成键模式的振幅比|C1|/|C2|和相位差Δϕ随(c)硅环宽度w1和(d)两环心间距d的变化曲线

    Fig. 7.  2D far-field patterns on xy plane for Si R-Au SRN with different values of (a) the width of Si ring and (b) the distance between the centers of Si and Au rings. Changes of amplitude ratio and phase difference of the anti-bonging and bonding modes with respect to (c) the width of Si ring and (d) the distance between the centers of the two rings.

    图 8  (a)电偶极子光源的激发配置图; (b)偶极光源及其激发下硅环-开口金环纳米结构在xy面上的二维远场发射(散射)分布; (c), (d)偶极光源和角向矢量光激发下纳米结构在xyxz面的二维远场散射分布

    Fig. 8.  (a) Schematic diagram of the Si R-Au SRN excited by an electric dipole; (b) 2D far-field patterns on xy plane of the dipole source and the Si R-Au SRN excited with the dipole source; (c), (d) 2D far-field patterns on xy and xz planes of the Si R-Au SRN excited by the dipole source and APB, respectively.

    表 1  紧聚焦角向矢量光激发下硅环-开口金环纳米结构散射谱的耦合振子模型拟合参数

    Table 1.  Fitting coefficients of coupled-oscillator model for scattering spectrum of Si R-Au SRN excited by tightly focused APB

    参数ω1/eVω2/eVγ1/eVγ2/eVη1/eVη2/eVg/eVE0/eVI0/arb.units
    数值1.54691.04450.08600.06510.03780.01030.06472.63840
    下载: 导出CSV
  • [1]

    Engheta N 2011 Science 334 317Google Scholar

    [2]

    Taminiau T H, Stefani F D, Segerink F B, van Hulst N F 2008 Nat. Photonics 2 234Google Scholar

    [3]

    Ahmed A, Gordon R 2012 Nano Lett. 12 2625Google Scholar

    [4]

    Ahmed A, Pang Y, Hajisalem G, Gordon R 2012 Int. J. Opt. 2012 729138

    [5]

    Ou Y C, Webb J A, Faley S, Shae D, Talbert E M, Lin S, Cutright C C, Wilson J T, Bellan L M, Bardhan R 2016 ACS Omega 1 234Google Scholar

    [6]

    Atwater H A, Polman A 2010 Nat. Mater. 9 205Google Scholar

    [7]

    Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P 2008 Nat. Mater. 7 442Google Scholar

    [8]

    Bharadwaj P, Deutsch B, Novotny L 2009 Adv. Opt. Photonics 1 438Google Scholar

    [9]

    蒋双凤, 孔凡敏, 李康, 高辉 2011 物理学报 60 045203Google Scholar

    Jiang S F, Kong F M, Li K, Gao H 2011 Acta Phys. Sin. 60 045203Google Scholar

    [10]

    Maksymov I S, Staude I, Miroshnichenko A E, Kivshar Y S 2012 Nanophotonics 1 65Google Scholar

    [11]

    Guo R, Decker M, Setzpfandt F, Staude I, Neshev D N, Kivshar Y S 2015 Nano Lett. 15 3324Google Scholar

    [12]

    Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R, van Hulst N F 2010 Science 329 930Google Scholar

    [13]

    Vercruysse D, Sonnefraud Y, Verellen N, Fuchs F B, Di Martino G, Lagae L, Moshchalkov V V, Maier S A, Van Dorpe P 2013 Nano Lett. 13 3843Google Scholar

    [14]

    Hancu I M, Curto A G, Castro-Lopez M, Kuttge M, van Hulst N F 2014 Nano Lett. 14 166Google Scholar

    [15]

    Kerker M, Wang D S, Giles C L 1983 J. Opt. Soc. Am. 73 765Google Scholar

    [16]

    Geffrin J M, Garcia-Camara B, Gomez-Medina R, Albella P, Froufe-Perez L S, Eyraud C, Litman A, Vaillon R, Gonzalez F, Nieto-Vesperinas M, Saenz J J, Moreno F 2012 Nat. Commun. 3 1171Google Scholar

    [17]

    Fu Y H, Kuznetsov A I, Miroshnichenko A E, Yu Y F, Luk'yanchuk B 2013 Nat. Commun. 4 1527Google Scholar

    [18]

    Person S, Jain M, Lapin Z, Saenz J J, Wicks G, Novotny L 2013 Nano Lett. 13 1806Google Scholar

    [19]

    Ma C, Yan J, Huang Y, Yang G 2017 Adv. Opt. Mater. 5 1700761Google Scholar

    [20]

    Neugebauer M, Woźniak P, Bag A, Leuchs G, Banzer P 2016 Nat. Commun. 7 11286Google Scholar

    [21]

    Nechayev S, Eismann J S, Neugebauer M, Woźniak P, Bag A, Leuchs G, Banzer P 2019 Phys. Rev. A 99 041801Google Scholar

    [22]

    Bag A, Neugebauer M, Wozniak P, Leuchs G, Banzer P 2018 Phys. Rev. Lett. 121 193902Google Scholar

    [23]

    Bag A, Neugebauer M, Mick U, Christiansen S, Schulz S A, Banzer P 2020 Nat. Commun. 11 2915Google Scholar

    [24]

    Linden S, Enkrich C, Wegener M, Zhou J F, Koschny T, Soukoulis C M 2004 Science 306 1351Google Scholar

    [25]

    张富利, 赵晓鹏 2007 物理学报 56 4661Google Scholar

    Zhang F L, Zhao X P 2007 Acta Phys. Sin. 56 4661Google Scholar

    [26]

    Liu H, Genov D A, Wu D M, Liu Y M, Liu Z W, Sun C, Zhu S N, Zhang X 2007 Phys. Rev. B 76 073101Google Scholar

    [27]

    Guo H C, Liu N, Fu L W, Meyrath T P, Zentgraf T, Schweizer H, Giessen H 2007 Opt. Express 15 12095Google Scholar

    [28]

    Liu N, Kaiser S, Giessen H 2008 Adv. Mater. 20 4521Google Scholar

    [29]

    Yang Z J, Zhang Z S, Hao Z H, Wang Q Q 2012 Opt. Lett. 37 3675Google Scholar

    [30]

    Ye J, Kong Y, Liu C 2016 J. Phys. D:Appl. Phys. 49 205106Google Scholar

    [31]

    Zhang D, Xiang J, Liu H F, Deng F, Liu H Y, Ouyang M, Fan H H, Dai Q F 2017 Opt. Express 25 26704Google Scholar

    [32]

    Bao Y J, Hu Z J, Li Z W, Zhu X, Fang Z Y 2015 Small 11 2177Google Scholar

    [33]

    Shegai T, Chen S, Miljkovic V D, Zengin G, Johansson P, Kall M 2011 Nat. Commun. 2 481Google Scholar

    [34]

    Youngworth K, Brown T 2000 Opt. Express 7 77Google Scholar

    [35]

    Palik E D 1991 Handbook of Optical Constants of Solids (Boston: Academic Press)

    [36]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [37]

    Woźniak P, Banzer P, Leuchs G 2015 Laser Photonics Rev. 9 231Google Scholar

    [38]

    Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419Google Scholar

    [39]

    Lovera A, Gallinet B, Nordlander P, Martin O J 2013 ACS Nano 7 4527Google Scholar

    [40]

    Shang W Y, Xiao F J, Zhu W R, He H S, Premaratne M, Mei T, Zhao J L 2017 Sci. Rep. 7 1049Google Scholar

    [41]

    Yang Z J, Zhao Q, He J 2017 Opt. Express 25 15927Google Scholar

  • [1] 孙淑鹏, 程用志, 罗辉, 陈浮, 杨玲玲, 李享成. 基于人工表面等离激元的小型化电可调缺口带滤波器. 物理学报, 2024, 73(3): 034101. doi: 10.7498/aps.73.20231447
    [2] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型. 物理学报, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [3] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [4] 姜悦, 王淑英, 王治业, 周华, 卡马勒, 赵颂, 沈向前. 渔网超结构的等离激元模式及其对薄膜电池的陷光调控. 物理学报, 2021, 70(21): 218801. doi: 10.7498/aps.70.20210693
    [5] 杨帅, 毛海央, 鲍爱达, 郭鑫, 李锐锐, 杨宇东, 石梦, 陈大鹏. 基于等离激元多重杂化效应的光吸收结构. 物理学报, 2021, 70(4): 047802. doi: 10.7498/aps.70.20201512
    [6] 胡宝晶, 黄铭, 黎鹏, 杨晶晶. 基于纳米金属-石墨烯耦合的多频段等离激元诱导透明. 物理学报, 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [7] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [8] 褚培新, 张玉斌, 陈俊学. 开口狭缝调制的耦合微腔中表面等离激元诱导透明特性. 物理学报, 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [9] 刘亮, 韩德专, 石磊. 等离激元能带结构与应用. 物理学报, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [10] 管福鑫, 董少华, 何琼, 肖诗逸, 孙树林, 周磊. 表面等离极化激元的散射及波前调控. 物理学报, 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614
    [11] 权家琪, 圣宗强, 吴宏伟. 基于人工表面等离激元结构的全向隐身. 物理学报, 2019, 68(15): 154101. doi: 10.7498/aps.68.20190283
    [12] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [13] 周强, 林树培, 张朴, 陈学文. 旋转对称表面等离激元结构中极端局域光场的准正则模式分析. 物理学报, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [14] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [15] 祁云平, 周培阳, 张雪伟, 严春满, 王向贤. 基于塔姆激元-表面等离极化激元混合模式的单缝加凹槽纳米结构的增强透射. 物理学报, 2018, 67(10): 107104. doi: 10.7498/aps.67.20180117
    [16] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [17] 黄志芳, 倪亚贤, 孙华. 柱状磁光颗粒的局域表面等离激元共振及尺寸效应. 物理学报, 2016, 65(11): 114202. doi: 10.7498/aps.65.114202
    [18] 张永元, 罗李娜, 张中月. 十字结构银纳米线的表面等离极化激元分束特性. 物理学报, 2015, 64(9): 097303. doi: 10.7498/aps.64.097303
    [19] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [20] 王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲. 基于多阶等离激元谐振的超薄多频带超材料吸波体. 物理学报, 2014, 63(17): 174101. doi: 10.7498/aps.63.174101
计量
  • 文章访问数:  3187
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 修回日期:  2022-03-11
  • 上网日期:  2022-06-29
  • 刊出日期:  2022-07-05

/

返回文章
返回