搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于人工表面等离激元的小型化电可调缺口带滤波器

孙淑鹏 程用志 罗辉 陈浮 杨玲玲 李享成

引用本文:
Citation:

基于人工表面等离激元的小型化电可调缺口带滤波器

孙淑鹏, 程用志, 罗辉, 陈浮, 杨玲玲, 李享成

Miniaturized electronically controlled notched band filter based on spoof surface plasmon polaritons

Sun Shu-Peng, Cheng Yong-Zhi, Luo Hui, Chen Fu, Yang Ling-Ling, Li Xiang-Cheng
PDF
HTML
导出引用
  • 具有小型化的缺口带滤波器在微波集成系统中具有广泛的应用前景. 本文基于倒山形单元的人工表面等离激元(spoof surface plasmon polariton, SSPP)提出了一种新型小型化电可调缺口带滤波器. 与相同横向尺寸的传统SSPP单元相比, 所提出的倒山形单元的色散曲线表现出更好的慢波特性, 渐近频率降低至原来的55%. 缺口带的频率可通过调整变容二极管两端的偏置电压来动态控制. 随着偏置电压从0.5 V增至30 V, 缺口带频率从2.1 GHz移动到2.3 GHz, 实现动态调节. 仿真结果表明, 缺口带滤波器通带内实现了较低的插入损耗(S21 < –1 dB)和良好的回波损耗(S11 > –10 dB), 并且具有小型化的优势, 尺寸仅为0.78λg × 0.35λg, λg是中心频率处的波长. 采用印刷电路板技术实际加工了缺口带滤波器. 实物测量和仿真结果吻合较好, 验证了设计的可靠性.
    In this paper, a novel miniaturized electronical controlled notch band filter based on spoof surface plasmon polaritons (SSPPs) with inverted “山”-shaped unit is designed and experimentally demonstrated. The notch band filter is mainly composed of four parts: microstrip transmission line, transition structure, inverted “山”-shaped SSPPs, and split ring resonator (SRR) structure, and a varactor diode is embedded in the slit notch of the SRR structure to realize electronic control. Comparing with the traditional SSPP unit with the same lateral size, the dispersion curve of the proposed inverted “山”-shaped unit shows better slow wave characteristics, and the asymptotic frequency is reduced to 55%. The frequency of the notch band can be dynamically controlled by adjusting the external bias voltage at both ends of the varactor diode. As the external bias voltage increases from 0.5 V to 30 V, the notch band frequency can be changed from 2.1 GHz to 2.3 GHz and achieve easily electronic regulation. The simulation results show that the notched band filter achieves low insertion loss (S21 < –1 dB) and great return loss (S11 > –10 dB) in the pass band, which has the advantage of miniaturization with the size only 0.78λg × 0.35λg. It is worth noting that when the equivalent capacitance of the slit notch is changed, the transmission coefficient of the notched band is always less than –15 dB, showing superior band-stop performance. At the same time, by comparing and analyzing the electric field distribution of notch band filter, the transmission mechanism of microwave signal is further verified. In order to verify the its effectiveness, the traditional printed circuit board technology is used to fabricate notch band filter. The measurement results are in good agreement with the simulation ones, verifying the feasibility of the design. The electronically controlled notch band filter has higher integration and can effectively suppress the interference frequency band.
      通信作者: 程用志, chengyz@wust.edu.cn ; 李享成, lixiangcheng@wust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52304410, 51972242)、湖北省自然科学基金创新群体项目(批准号: 2020CFA038)、湖北省重点研发计划(批准号: 2020BAA028)、湖北省重大项目(批准号: 2023BAA003)和湖北省青年拔尖人才培养计划资助的课题.
      Corresponding author: Cheng Yong-Zhi, chengyz@wust.edu.cn ; Li Xiang-Cheng, lixiangcheng@wust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52304410, 51972242), the Science Fund for Creative Research Groups of the National Natural Science Foundation of Hubei Province, China (Grant No. 2020CFA038), the Key Research and Development Project of Hubei Province, China (Grant No. 2020BAA028), the Major Program of Hubei Province, China (Grant No. 2023BAA003), and the Young Top-notch Talent Cultivation Program of Hubei Province, China.
    [1]

    Bi X K, Zhang X, Huang G L, Yuan T 2019 IEEE Access 7 49169Google Scholar

    [2]

    Pendry J B, Martin-Moreno L, Garcia-Vidal F J 2004 Science 305 847Google Scholar

    [3]

    Liao Z, Zhao J, Pan B C 2014 Appl. Phys. 47 315103Google Scholar

    [4]

    Sun S P, Cheng Y Z, Luo H, Chen F, Li X C 2023 Plasmonics 18 165Google Scholar

    [5]

    Li X P, Zhang J X, Yang H L, Xi X L 2022 J. Electron. Inf. Technol. 44 1327 [李绪平, 张佳翔, 杨海龙, 席晓莉 2022 电子与信息学报 44 1327]Google Scholar

    Li X P, Zhang J X, Yang H L, Xi X L 2022 J. Electron. Inf. Technol. 44 1327Google Scholar

    [6]

    孙淑鹏, 程用志, 罗辉, 陈浮, 李享成 2023 物理学报 72 064101Google Scholar

    Sun S P, Cheng Y Z, Luo H, Chen F, Li X C 2023 Acta Phys. Sin. 72 064101Google Scholar

    [7]

    朱华利, 张勇, 叶龙芳 2022 光学学报 42 1523001Google Scholar

    Zhu H L, Zhang Y, Ye L F 2022 Acta Opt. Sin. 42 1523001Google Scholar

    [8]

    Chen P, Li L, Yang K, Chen Q 2018 IEEE Microw. Wirel. Co. 28 984Google Scholar

    [9]

    罗宇轩, 程用志, 陈浮, 罗辉, 李享成 2023 物理学报 72 044101Google Scholar

    Luo Y X, Cheng Y Z, Chen F, Luo H, Li X C 2023 Acta Phys. Sin 72 044101Google Scholar

    [10]

    朱登玮, 曾瑞敏, 唐泽恬, 丁召, 杨晨 2020 激光与光电子学进展 57 172401Google Scholar

    Zhu D W, Zeng R M, Tang Z T, Ding Z, Yang C 2020 Laser Optoelectron. Prog. 57 172401Google Scholar

    [11]

    Sangam R S, Kshetrimayum R S 2021 IET Microw. Antennas Propag. 15 289Google Scholar

    [12]

    Wang J, Zhao L, Hao Z C, Shen X P, Cui T J 2019 Optics Letters 44 3374Google Scholar

    [13]

    Kianinejad A, Chen Z N, Qiu C W 2015 IEEE T. Microw. Theory. 63 1817Google Scholar

    [14]

    Yin J Y, Ren J, Zhang Q, Zhang H C, Liu Y Q, Li Y B, Wan X, Cui T J 2016 IEEE T. Antenn. Propag. 64 5181Google Scholar

    [15]

    Wang Z X, Zhang H C, Lu J Y 2019 J. Phys. D Appl. Phys. 52 025107Google Scholar

    [16]

    Ye L F, Chen Z K, Zhang Y 2022 IEEE T. Circuits-II 70 1445Google Scholar

    [17]

    Xu J, Zhang H C, Tang W X 2016 Appl. Phys. Lett. 108 191906Google Scholar

    [18]

    Lin H, Yu J B, Xiao B G 2023 J. Phys. B 56 075401Google Scholar

    [19]

    Liu H, Wang Z, Zhang Q, Ma H 2019 IEEE Access 7 44212Google Scholar

    [20]

    Jiang T, Shen L, Zhang X 2009 Prog. Electromagn. Res. 8 91Google Scholar

  • 图 1  (a)矩形、T形、开口环形和倒山形SSPP 结构; (b)色散曲线的比较

    Fig. 1.  (a) Rectangular, T-shaped, split-ring shaped, inverted “山”-shaped SSPP structure; (b) comparison of dispersion curves.

    图 2  (a) SSPP波导示意图; (b) 对应的等效LC电路; (c)电磁和等效LC电路仿真S参数(S11S21)

    Fig. 2.  (a) Schematic of the SSPP waveguide; (b) the corresponding equivalent LC circuit model; (c) the comparisons of S-parameters (S11 and S21) from EM and equivalent LC circuit simulations.

    图 3  (a)电可调缺口带滤波器示意图; (b) 对应的等效LC电路; (c)电磁和等效LC电路仿真得到的S参数(S11S21); (d)电磁仿真得到的S参数(S11S21)相位

    Fig. 3.  (a) Schematic diagram of an electrically adjustable notched band filter; (b) the corresponding equivalent LC circuit model; (c) comparisons of S-parameters (S11 and S21) from EM and equivalent LC circuit simulations; (d) the phases of S-parameters (S11 and S21) from EM simulation.

    图 4  缺口带滤波器的LC等效电路传输系数随等效电容的变化

    Fig. 4.  Transmission coefficient of the notched band filter as a function of equivalent capacitance.

    图 5  1.5 GHz, 2.25 GHz和5.0 GHz处的z分量电场分布

    Fig. 5.  z-component electric field distribution at 1.5 GHz, 2.25 GHz and 5.0 GHz.

    图 6  (a)电可调缺口带滤波器的实物图; (b)—(d)模拟和实测的S参数对比曲线.

    Fig. 6.  (a) Physical plot of electrically adjustable notched band filter; (b)–(d) the comparison curves of simulated and measured S-parameters.

    表 1  与参考文献中滤波器的性能对比

    Table 1.  Comparison with filters in references.

    参考文献频率范围插入损耗电可调尺寸(λg×λg)
    [5]0—12.50.90.98×0.17
    [8]7.3—11.222.85×0.67
    [9]1.49—3.632.51.17×0.64
    [10]0—7.132.45×0.47
    [11]8—13.521.87×0.63
    [17]6.4—10.21.53.70×0.94
    本文0—3.710.78×0.35
    下载: 导出CSV
  • [1]

    Bi X K, Zhang X, Huang G L, Yuan T 2019 IEEE Access 7 49169Google Scholar

    [2]

    Pendry J B, Martin-Moreno L, Garcia-Vidal F J 2004 Science 305 847Google Scholar

    [3]

    Liao Z, Zhao J, Pan B C 2014 Appl. Phys. 47 315103Google Scholar

    [4]

    Sun S P, Cheng Y Z, Luo H, Chen F, Li X C 2023 Plasmonics 18 165Google Scholar

    [5]

    Li X P, Zhang J X, Yang H L, Xi X L 2022 J. Electron. Inf. Technol. 44 1327 [李绪平, 张佳翔, 杨海龙, 席晓莉 2022 电子与信息学报 44 1327]Google Scholar

    Li X P, Zhang J X, Yang H L, Xi X L 2022 J. Electron. Inf. Technol. 44 1327Google Scholar

    [6]

    孙淑鹏, 程用志, 罗辉, 陈浮, 李享成 2023 物理学报 72 064101Google Scholar

    Sun S P, Cheng Y Z, Luo H, Chen F, Li X C 2023 Acta Phys. Sin. 72 064101Google Scholar

    [7]

    朱华利, 张勇, 叶龙芳 2022 光学学报 42 1523001Google Scholar

    Zhu H L, Zhang Y, Ye L F 2022 Acta Opt. Sin. 42 1523001Google Scholar

    [8]

    Chen P, Li L, Yang K, Chen Q 2018 IEEE Microw. Wirel. Co. 28 984Google Scholar

    [9]

    罗宇轩, 程用志, 陈浮, 罗辉, 李享成 2023 物理学报 72 044101Google Scholar

    Luo Y X, Cheng Y Z, Chen F, Luo H, Li X C 2023 Acta Phys. Sin 72 044101Google Scholar

    [10]

    朱登玮, 曾瑞敏, 唐泽恬, 丁召, 杨晨 2020 激光与光电子学进展 57 172401Google Scholar

    Zhu D W, Zeng R M, Tang Z T, Ding Z, Yang C 2020 Laser Optoelectron. Prog. 57 172401Google Scholar

    [11]

    Sangam R S, Kshetrimayum R S 2021 IET Microw. Antennas Propag. 15 289Google Scholar

    [12]

    Wang J, Zhao L, Hao Z C, Shen X P, Cui T J 2019 Optics Letters 44 3374Google Scholar

    [13]

    Kianinejad A, Chen Z N, Qiu C W 2015 IEEE T. Microw. Theory. 63 1817Google Scholar

    [14]

    Yin J Y, Ren J, Zhang Q, Zhang H C, Liu Y Q, Li Y B, Wan X, Cui T J 2016 IEEE T. Antenn. Propag. 64 5181Google Scholar

    [15]

    Wang Z X, Zhang H C, Lu J Y 2019 J. Phys. D Appl. Phys. 52 025107Google Scholar

    [16]

    Ye L F, Chen Z K, Zhang Y 2022 IEEE T. Circuits-II 70 1445Google Scholar

    [17]

    Xu J, Zhang H C, Tang W X 2016 Appl. Phys. Lett. 108 191906Google Scholar

    [18]

    Lin H, Yu J B, Xiao B G 2023 J. Phys. B 56 075401Google Scholar

    [19]

    Liu H, Wang Z, Zhang Q, Ma H 2019 IEEE Access 7 44212Google Scholar

    [20]

    Jiang T, Shen L, Zhang X 2009 Prog. Electromagn. Res. 8 91Google Scholar

  • [1] 孙淑鹏, 程用志, 罗辉, 陈浮, 李享成. 基于戟形人工表面等离激元的紧凑型宽带外抑制带通滤波器. 物理学报, 2023, 72(6): 064101. doi: 10.7498/aps.72.20222291
    [2] 罗宇轩, 程用志, 陈浮, 罗辉, 李享成. 基于沙漏形人工表面等离激元和交指电容结构的双频滤波器设计. 物理学报, 2023, 72(4): 044101. doi: 10.7498/aps.72.20221984
    [3] 王晓雷, 赵洁惠, 李淼, 姜光科, 胡晓雪, 张楠, 翟宏琛, 刘伟伟. 基于人工表面等离激元探针实现太赫兹波的紧聚焦和场增强. 物理学报, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [4] 王超, 李勇峰, 沈杨, 丰茂昌, 王甲富, 马华, 张介秋, 屈绍波. 基于人工表面等离激元的双通带频率选择结构设计. 物理学报, 2018, 67(20): 204101. doi: 10.7498/aps.67.20180696
    [5] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [6] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [7] 鲍迪, 沈晓鹏, 崔铁军. 太赫兹人工电磁媒质研究进展. 物理学报, 2015, 64(22): 228701. doi: 10.7498/aps.64.228701
    [8] 周品嘉, 王轶文, 韦联福. 应用于弱光探测的热敏超导谐振器. 物理学报, 2014, 63(7): 070701. doi: 10.7498/aps.63.070701
    [9] 吴青峻, 吴凡, 孙理斌, 胡晓琳, 叶鸣, 徐越, 史斌, 谢昊, 夏娟, 蒋建中, 张冬仙. 基于表面等离子激元的超薄金属减色滤波器的研究. 物理学报, 2014, 63(20): 207801. doi: 10.7498/aps.63.207801
    [10] 王五松, 张利伟, 冉佳, 张冶文. 微波频段表面等离子激元波导滤波器的实验研究. 物理学报, 2013, 62(18): 184203. doi: 10.7498/aps.62.184203
    [11] 王培培, 杨超杰, 李洁, 唐鹏, 林峰, 朱星. 金膜上亚波长小孔阵列表面等离激元颜色滤波器偏振性质. 物理学报, 2013, 62(16): 167302. doi: 10.7498/aps.62.167302
    [12] 田赫, 孙伟民, 掌蕴东. 耦合谐振器光波导旋转传感的相位灵敏度. 物理学报, 2013, 62(19): 194204. doi: 10.7498/aps.62.194204
    [13] 杨一鸣, 屈绍波, 王甲富, 赵静波, 柏鹏, 李哲, 夏颂, 徐卓. 基于介质谐振器原理的左手材料设计. 物理学报, 2011, 60(7): 074201. doi: 10.7498/aps.60.074201
    [14] 王甲富, 屈绍波, 徐卓, 夏颂, 张介秋, 马华, 杨一鸣, 吴翔. 电谐振器和磁谐振器构成的左手材料的实验验证. 物理学报, 2010, 59(3): 1847-1850. doi: 10.7498/aps.59.1847
    [15] 陈建军, 李 智, 张家森, 龚旗煌. 基于电光聚合物的表面等离激元调制器. 物理学报, 2008, 57(9): 5893-5898. doi: 10.7498/aps.57.5893
    [16] 史庆藩, 郑俊娟, 王 琪. 微波谐振腔Q值对磁激子振幅不稳定态阈值的影响. 物理学报, 2004, 53(10): 3535-3539. doi: 10.7498/aps.53.3535
    [17] 史庆藩, 闫学群. 非线性激发的磁激子对的振荡特性. 物理学报, 2003, 52(1): 225-228. doi: 10.7498/aps.52.225
    [18] 李宏成, 王瑞兰, 魏斌. 介质谐振器法测量高温超导薄膜微波表面电阻的误差分析. 物理学报, 2001, 50(5): 938-941. doi: 10.7498/aps.50.938
    [19] 黄国翔, 颜家壬, 戴显熹. 矩形谐振器中非传播重力-表面张力孤波的理论研究. 物理学报, 1990, 39(8): 52-60. doi: 10.7498/aps.39.52
    [20] 吴君汝, A. LARRAZA, I. RUDNICK. 水表面波矩型谐振器非线性共振曲线的测量. 物理学报, 1985, 34(6): 796-800. doi: 10.7498/aps.34.796
计量
  • 文章访问数:  2300
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-06
  • 修回日期:  2023-10-15
  • 上网日期:  2023-11-09
  • 刊出日期:  2024-02-05

/

返回文章
返回