搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于沙漏形人工表面等离激元和交指电容结构的双频滤波器设计

罗宇轩 程用志 陈浮 罗辉 李享成

引用本文:
Citation:

基于沙漏形人工表面等离激元和交指电容结构的双频滤波器设计

罗宇轩, 程用志, 陈浮, 罗辉, 李享成

Dual-band filter design based on hourglass-shaped spoof surface plasmon polaritons and interdigital capacitor structure

Luo Yu-Xuan, Cheng Yong-Zhi, Chen Fu, Luo Hui, Li Xiang-Cheng
PDF
HTML
导出引用
  • 本文提出了一种在共面波导(coplanar waveguide, CPW)上加载沙漏形人工表面等离激元(spoof surface plasmon polaritons, SSPPs)和交指电容结构的双通带滤波器. 首先, 在共面波导传输线上引入了沙漏形SSPP单元结构和交指电容结构, 以获得高分数带宽、低插损的通带特性. 然后, 通过加载交指电容环路谐振器激发陷波, 形成双通带滤波器. 仿真结果表明, 所提出的双通带滤波器具有良好的上边带抑制和双通带滤波性能. 两个通带的相对带宽分别为46.8%(1.49—2.40 GHz)和15.1%(2.98—3.63 GHz), 可在4.77—7.48 GHz的范围内实现超过–40 dB的抑制, 且可通过改变相应的结构参数独立调控两个通带的上、下截止频率. 为深入了解双通带滤波器的工作原理, 给出了相应的色散曲线和电场分布、LC等效电路分析. 最后, 根据优化后参数数值, 加工出滤波器原型实物. 实验结果与仿真结果吻合良好, 由此表明提出的双通带滤波器在微波频率的集成电路应用中具有重要意义.
    In this paper, a dual passband filter with spoof surface plasmon polaritons (SSPPs) and interdigital capacitance structure loaded on a coplanar waveguide (CPW) is proposed. First, the hourglass-shaped SSPP unit-cell structure and the interdigital capacitor structure are introduced on the coplanar waveguide transmission line to obtain high fractional bandwidth and low insertion loss passband characteristics. Then, a dual passband filter is formed by loading the interdigital capacitor loop resonator to excite the trapped waves. The simulation results show that the proposed dual passband filter has excellent upper sideband rejection and dual passband filtering performance. The fractional bandwidths of the two passbands of the design are 46.8% (1.49–2.40 GHz) and 15.1% (2.98–3.63 GHz), respectively, which can achieve more than –40 dB rejection in a range of 4.77–7.48 GHz. The upper cutoff frequency and lower cutoff frequency of the two passbands can be independently regulated by changing the structural parameters of the proposed filter. In order to gain a more in-depth understanding of the operating principle of the dual passband filter, the corresponding dispersion curves and electric field distribution, LC equivalent circuit analysis are given. Finally, the prototype of the designed filter is fabricated according to the optimized parameter values. The experimental results are in good agreement with the simulation ones, indicating that the proposed dual-passband filter is of great importance in implementing microwave integrated circuits .
      通信作者: 程用志, chengyz@wust.edu.cn
    • 基金项目: 湖北省自然科学基金创新群体项目 (批准号: 2020CFA038)和湖北省重点研发项目(批准号: 2020BAA028)资助的课题.
      Corresponding author: Cheng Yong-Zhi, chengyz@wust.edu.cn
    • Funds: Supported by Hubei Provincial Natural Science Foundation Innovation Group Project (Grant No. 2020CFA038) and Hubei Provincial Key R&D Project (Grant No. 2020BAA028).
    [1]

    Zhang R, Zhu L 2013 IEEE Trans. Microwave Theory Tech. 61 1820Google Scholar

    [2]

    Gomez-Garcia R, Yang L, Munoz-Ferreras J M, Psychogiou D 2019 IEEE Microw. Wireless Compon. Lett. 29 453

    [3]

    Mansour R R, Laforge P D 2016 IEEE MTT-S International Microwave Symposium San Francisco, May 22–27, 2016 p1

    [4]

    Qu L L, Zhang Y H, Li Q, Liu J W, Fan Y 2020 International Conference on Microwave and Millimeter Wave Technology Shanghai, September 20–23, 2020 p1

    [5]

    Amari S, Bekheit M 2008 IEEE Trans. Microwave Theory Tech. 56 1938Google Scholar

    [6]

    Nocella V, Pelliccia L, Tomassoni C, Sorrentino R 2016 IEEE Microw. Wireless Compon. Lett. 26 310Google Scholar

    [7]

    Bartlett C, Hoft M 2021 Electron. Lett. 57 328Google Scholar

    [8]

    Li K, Kang G Q, Liu H, Zhao Z Y 2020 Microsyst. Technol. 26 913Google Scholar

    [9]

    Duarte G, Silva A, Oliveira C, Dmitriev V, Melo G, Castro W 2021 IEEE MTT-S International Microwave and Optoelectronics Conference Fortaleza, October 24–27, 2021 p1

    [10]

    Miek D, Boe P, Kamrath F, Hoft M 2021 IEEE MTT-S International Microwave Filter Workshop Perugia, November 17–19, 2021 p73

    [11]

    Litvintsev S, Rozenko S 2021 IEEE 3rd Ukraine Conference on Electrical and Computer Engineering Lviv, August 26–28, 2021 p121

    [12]

    Li D, Wang J A, Liu Y, Chen Z 2020 IEEE Access 8 25588Google Scholar

    [13]

    张德伟, 王树兴, 刘庆, 周东方, 张毅, 吕大龙, 吴瑛 2018 电子学报 46 387Google Scholar

    Zhang D W, Wang S X, Liu Q, Zhou D F, Zhang Y, Lv D L, Wu Y 2018 Chin. J. Electron. 46 387Google Scholar

    [14]

    Chen R S, Zhu L, Lin J Y, Wong S W, He Y 2020 IEEE Microw. Wireless Compon. Lett. 30 573Google Scholar

    [15]

    朱登玮, 曾瑞敏, 唐泽恬, 丁召, 杨晨 2020 激光与光电子学进展 57 172401Google Scholar

    Zhu D W, Zeng R M, Tang Z T, Ding Z, Yang C 2020 Laser Optoelectron. Prog. 57 172401Google Scholar

    [16]

    石光明, 马震远, 麦智荣, 林智勇 2020 电子学报 48 1641Google Scholar

    Shi G M, Ma Z Y, Mai Z Y, Lin Z Y 2020 Chin. J. Electron. 48 1641Google Scholar

    [17]

    苏林, 马力, 孙炳文, 郭圣明 2014 物理学报 10 104302Google Scholar

    Su L, Ma L, Sun B W, Guo S M 2014 Acta Phys. Sin. 10 104302Google Scholar

    [18]

    盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳 2015 物理学报 10 108402Google Scholar

    Sheng S W, Li K, Kong F M, Yue Q Y, Zhuang H W, Zhao J 2015 Acta Phys. Sin. 10 108402Google Scholar

    [19]

    Jaiswal R K, Pandit N, Pathak N P 2019 IEEE Photon. Technol. Lett. 31 1293Google Scholar

    [20]

    Feng W, Feng Y, Yang W, Che W, Xue Q 2019 IEEE Trans. Plasma Sci. 47 2832Google Scholar

    [21]

    吴梦, 梁西银, 颜昌林, 祁云平 2019 激光与光电子学进展 56 202417Google Scholar

    Meng W, Liang X Y, Yan C L, Qi Y P 2019 Laser Optoelectron. Prog. 56 202417Google Scholar

    [22]

    Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M, Zhuang S L 2019 Front Inform. Tech. El. 20 591Google Scholar

    [23]

    Shang H, Liu Y, Li Z, Tian Y 2020 Int. J. RF Microw. C. E. 32 e22440

    [24]

    Wang Z X, Zhang H C, Lu J, Xu P, Wu L W, Wu R Y, Cui T J 2018 J. Phys. D Appl. Phys. 52 025107Google Scholar

    [25]

    Chen Z M, Liu Y H, Wang J, Li Y, Zhu J H, Jiang W, Shen X P, Zhao L, Cui T J 2019 IEEE Access 8 4311Google Scholar

    [26]

    Yan S, Wang J, Kong X, Xu R, Chen Z M, Ma J Y, Zhao L 2022 IEEE Photonics Technol. Lett. 34 375Google Scholar

    [27]

    Peng Y, Zhang W X 2010 Microw. Opt. Techn. Lett. 52 166Google Scholar

    [28]

    Luo Y X, Yu J W, Cheng Y Z, Chen F, Luo H 2022 Appl. Phys. A 128 1Google Scholar

    [29]

    Sun S P, Cheng Y Z, Luo H, Chen F, Li X C 2022 Plasmonics 18 165Google Scholar

  • 图 1  提出的宽带带通滤波器原型的几何结构 (a)整体结构; (b)沙漏型SSPPs单元结构; (c)交指电容结构

    Fig. 1.  Geometry of the proposed broadband bandpass filter prototype: (a) The whole structure; (b) the hourglass-shaped SSPPs unit cell structure; (c) interdigital structure.

    图 2  仿真S参数 (a)SSPPs单元中间不加载交指电容结构; (b)设计的宽带带通滤波器

    Fig. 2.  Simulated S-parameters: (a) Without loading the cross-finger capacitor structure in the middle of SSPPs unit; (b) the designed broadband bandpass filter.

    图 3  加载了IDCLLRs的双带通滤波器几何结构 (a)整体结构; (b) IDCLLRs结构及其等效电路

    Fig. 3.  Geometry of the proposed dual-bandpass filter with loaded IDCLLRs: (a) The whole structure, (b) the IDCLLRs and its equivalent circuit diagram.

    图 4  (a)不同指长lr的IDCLLRs的传输系数; (b)加载了IDCLLRs的双带通滤波器的仿真S参数

    Fig. 4.  (a) The simulated transmission coefficients of the IDCLLRs with different finger lengths lr, (b) the simulated S-parameters of the proposed dual-bandpass filter.

    图 5  加载了两个IDCLLRs的双带通滤波器的等效电路模型

    Fig. 5.  Equivalent circuit of the proposed dual-bandpass filter with two IDCLLRs.

    图 6  EM仿真和LC电路仿真的S参数的对比

    Fig. 6.  Comparison of S-parameters obtained from EM simulation and LC circuit simulation.

    图 7  沙漏形SSPPs单元结构的色散曲线 (a)不同高度a; (b)不同宽度b

    Fig. 7.  Dispersion diagrams of the hourglass-shaped SSPP unit-cell with different (a) height a, (b) width b.

    图 8  不同 (a) SSPPs单元高度a, (b) SSPPs单元宽度b, (c)IDCLLRs的指长lr和(d) SSPPs单元交指电容结构间隙宽度s的模拟传输系数.

    Fig. 8.  Simulated transmission coefficients with different (a) SSPPs unit-cell heights a, (b) SSPPs unit-cell widths b, (c) finger lengths lr of IDCLLRs, and (d) SSPPs unit-cell interdigital structure gap widths s.

    图 9  分别在 (a) 1.9 GHz, (b) 2.7 GHz和(c) 3.5 GHz时, 所提出双带通滤波器的金属层的模拟电场(Ex)分布

    Fig. 9.  The simulated electric field (Ex) distributions of the metallic layer of the proposed dual-bandpass filter at (a) 1.9 GHz, (b) 2.7 GHz, and (c) 3.5 GHz, respectively.

    图 10  (a) 加工的双通带滤波器样品的照片; (b)仿真与测试的传输、反射系数的对比

    Fig. 10.  (a) The photograph of the fabricated microwave dual-bandpass filter sample; (b) the comparisons of the simulated and measured transmission and reflection coefficients.

    表 1  拟议的双通带滤波器的尺寸参数

    Table 1.  Dimensional parameters of the proposed dual-bandpass filter.

    参数w1w2w3gg1g2abc
    值/mm3.014.960.00.10.10.34.17.514.5
    参数lwslslrlwlxlylz
    值/mm1.50.20.20.13.00.17.82.31.0
    下载: 导出CSV

    表 2  仿真与测试数据的对比

    Table 2.  Simulation versus measured data.

    f0/GHzILMAX/dBRLMAX/dBFBW/%带外抑制
    仿真(Sim.)1.95/3.31–1.25/–1.20–14.3/–10.846.7/19.6–40 dB@ 4.77—7.48 GHz
    测量(Mea.)2.01/3.15–1.31/–2.50–14.1/–11.151.7/19.0–35 dB@ 4.30—7.70 GHz
    下载: 导出CSV

    表 3  先进的双通带滤波器对比

    Table 3.  State-of-the-art dual-bandpass filter comparison.

    参考文献f0/GHzIL/dBFBW/%带外抑制是否可调
    [2]1.57/2.381.2/2.09.9/6.5–30 dB@ 2.6—5.1 GHz
    [4]4.16/7.220.4/0.748.1/34.9–20 dB@ 8.6—9.0 GHz
    [8]2.30/3.201.1/1.711.3/9.4–20 dB@ 3.4—4.0 GHz
    [12]2.40/5.200.4/1.010.6/13.5–15 dB@ 5.8—12.4 GHz
    [14]0.19/0.271.75/1.11.6/2.1–25 dB@ 0.27—0.33 GHz
    本文工作2.01/3.151.3/2.551.7/19.0–35 dB@ 4.3—7.7 GHz
    下载: 导出CSV
  • [1]

    Zhang R, Zhu L 2013 IEEE Trans. Microwave Theory Tech. 61 1820Google Scholar

    [2]

    Gomez-Garcia R, Yang L, Munoz-Ferreras J M, Psychogiou D 2019 IEEE Microw. Wireless Compon. Lett. 29 453

    [3]

    Mansour R R, Laforge P D 2016 IEEE MTT-S International Microwave Symposium San Francisco, May 22–27, 2016 p1

    [4]

    Qu L L, Zhang Y H, Li Q, Liu J W, Fan Y 2020 International Conference on Microwave and Millimeter Wave Technology Shanghai, September 20–23, 2020 p1

    [5]

    Amari S, Bekheit M 2008 IEEE Trans. Microwave Theory Tech. 56 1938Google Scholar

    [6]

    Nocella V, Pelliccia L, Tomassoni C, Sorrentino R 2016 IEEE Microw. Wireless Compon. Lett. 26 310Google Scholar

    [7]

    Bartlett C, Hoft M 2021 Electron. Lett. 57 328Google Scholar

    [8]

    Li K, Kang G Q, Liu H, Zhao Z Y 2020 Microsyst. Technol. 26 913Google Scholar

    [9]

    Duarte G, Silva A, Oliveira C, Dmitriev V, Melo G, Castro W 2021 IEEE MTT-S International Microwave and Optoelectronics Conference Fortaleza, October 24–27, 2021 p1

    [10]

    Miek D, Boe P, Kamrath F, Hoft M 2021 IEEE MTT-S International Microwave Filter Workshop Perugia, November 17–19, 2021 p73

    [11]

    Litvintsev S, Rozenko S 2021 IEEE 3rd Ukraine Conference on Electrical and Computer Engineering Lviv, August 26–28, 2021 p121

    [12]

    Li D, Wang J A, Liu Y, Chen Z 2020 IEEE Access 8 25588Google Scholar

    [13]

    张德伟, 王树兴, 刘庆, 周东方, 张毅, 吕大龙, 吴瑛 2018 电子学报 46 387Google Scholar

    Zhang D W, Wang S X, Liu Q, Zhou D F, Zhang Y, Lv D L, Wu Y 2018 Chin. J. Electron. 46 387Google Scholar

    [14]

    Chen R S, Zhu L, Lin J Y, Wong S W, He Y 2020 IEEE Microw. Wireless Compon. Lett. 30 573Google Scholar

    [15]

    朱登玮, 曾瑞敏, 唐泽恬, 丁召, 杨晨 2020 激光与光电子学进展 57 172401Google Scholar

    Zhu D W, Zeng R M, Tang Z T, Ding Z, Yang C 2020 Laser Optoelectron. Prog. 57 172401Google Scholar

    [16]

    石光明, 马震远, 麦智荣, 林智勇 2020 电子学报 48 1641Google Scholar

    Shi G M, Ma Z Y, Mai Z Y, Lin Z Y 2020 Chin. J. Electron. 48 1641Google Scholar

    [17]

    苏林, 马力, 孙炳文, 郭圣明 2014 物理学报 10 104302Google Scholar

    Su L, Ma L, Sun B W, Guo S M 2014 Acta Phys. Sin. 10 104302Google Scholar

    [18]

    盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳 2015 物理学报 10 108402Google Scholar

    Sheng S W, Li K, Kong F M, Yue Q Y, Zhuang H W, Zhao J 2015 Acta Phys. Sin. 10 108402Google Scholar

    [19]

    Jaiswal R K, Pandit N, Pathak N P 2019 IEEE Photon. Technol. Lett. 31 1293Google Scholar

    [20]

    Feng W, Feng Y, Yang W, Che W, Xue Q 2019 IEEE Trans. Plasma Sci. 47 2832Google Scholar

    [21]

    吴梦, 梁西银, 颜昌林, 祁云平 2019 激光与光电子学进展 56 202417Google Scholar

    Meng W, Liang X Y, Yan C L, Qi Y P 2019 Laser Optoelectron. Prog. 56 202417Google Scholar

    [22]

    Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M, Zhuang S L 2019 Front Inform. Tech. El. 20 591Google Scholar

    [23]

    Shang H, Liu Y, Li Z, Tian Y 2020 Int. J. RF Microw. C. E. 32 e22440

    [24]

    Wang Z X, Zhang H C, Lu J, Xu P, Wu L W, Wu R Y, Cui T J 2018 J. Phys. D Appl. Phys. 52 025107Google Scholar

    [25]

    Chen Z M, Liu Y H, Wang J, Li Y, Zhu J H, Jiang W, Shen X P, Zhao L, Cui T J 2019 IEEE Access 8 4311Google Scholar

    [26]

    Yan S, Wang J, Kong X, Xu R, Chen Z M, Ma J Y, Zhao L 2022 IEEE Photonics Technol. Lett. 34 375Google Scholar

    [27]

    Peng Y, Zhang W X 2010 Microw. Opt. Techn. Lett. 52 166Google Scholar

    [28]

    Luo Y X, Yu J W, Cheng Y Z, Chen F, Luo H 2022 Appl. Phys. A 128 1Google Scholar

    [29]

    Sun S P, Cheng Y Z, Luo H, Chen F, Li X C 2022 Plasmonics 18 165Google Scholar

  • [1] 孙淑鹏, 程用志, 罗辉, 陈浮, 杨玲玲, 李享成. 基于人工表面等离激元的小型化电可调缺口带滤波器. 物理学报, 2024, 73(3): 034101. doi: 10.7498/aps.73.20231447
    [2] 王悦, 王伦, 孙柏逊, 郎鹏, 徐洋, 赵振龙, 宋晓伟, 季博宇, 林景全. 表面等离激元与入射光共同作用下的金纳米结构近场调控. 物理学报, 2023, 72(17): 175202. doi: 10.7498/aps.72.20230514
    [3] 孙淑鹏, 程用志, 罗辉, 陈浮, 李享成. 基于戟形人工表面等离激元的紧凑型宽带外抑制带通滤波器. 物理学报, 2023, 72(6): 064101. doi: 10.7498/aps.72.20222291
    [4] 刘亮, 韩德专, 石磊. 等离激元能带结构与应用. 物理学报, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [5] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [6] 殷允桥, 吴宏伟. 基于人工表面等离激元结构的超表面磁镜. 物理学报, 2020, 69(23): 234101. doi: 10.7498/aps.69.20200514
    [7] 王晓雷, 赵洁惠, 李淼, 姜光科, 胡晓雪, 张楠, 翟宏琛, 刘伟伟. 基于人工表面等离激元探针实现太赫兹波的紧聚焦和场增强. 物理学报, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [8] 周强, 林树培, 张朴, 陈学文. 旋转对称表面等离激元结构中极端局域光场的准正则模式分析. 物理学报, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [9] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控. 物理学报, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [10] 权家琪, 圣宗强, 吴宏伟. 基于人工表面等离激元结构的全向隐身. 物理学报, 2019, 68(15): 154101. doi: 10.7498/aps.68.20190283
    [11] 王超, 李勇峰, 沈杨, 丰茂昌, 王甲富, 马华, 张介秋, 屈绍波. 基于人工表面等离激元的双通带频率选择结构设计. 物理学报, 2018, 67(20): 204101. doi: 10.7498/aps.67.20180696
    [12] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [13] 张崇磊, 辛自强, 闵长俊, 袁小聪. 表面等离激元结构光照明显微成像技术研究进展. 物理学报, 2017, 66(14): 148701. doi: 10.7498/aps.66.148701
    [14] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦. 物理学报, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [15] 张永元, 罗李娜, 张中月. 十字结构银纳米线的表面等离极化激元分束特性. 物理学报, 2015, 64(9): 097303. doi: 10.7498/aps.64.097303
    [16] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [17] 鲍迪, 沈晓鹏, 崔铁军. 太赫兹人工电磁媒质研究进展. 物理学报, 2015, 64(22): 228701. doi: 10.7498/aps.64.228701
    [18] 王培培, 杨超杰, 李洁, 唐鹏, 林峰, 朱星. 金膜上亚波长小孔阵列表面等离激元颜色滤波器偏振性质. 物理学报, 2013, 62(16): 167302. doi: 10.7498/aps.62.167302
    [19] 徐新河, 肖绍球, 甘月红, 付崇芳, 王秉中. 交指电容加载的周期性对称负磁导率人工材料研究. 物理学报, 2012, 61(12): 124103. doi: 10.7498/aps.61.124103
    [20] 陈建军, 李 智, 张家森, 龚旗煌. 基于电光聚合物的表面等离激元调制器. 物理学报, 2008, 57(9): 5893-5898. doi: 10.7498/aps.57.5893
计量
  • 文章访问数:  5220
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-17
  • 修回日期:  2022-12-02
  • 上网日期:  2023-02-09
  • 刊出日期:  2023-02-20

/

返回文章
返回