-
本文提出了一种在共面波导(coplanar waveguide, CPW)上加载沙漏形人工表面等离激元(spoof surface plasmon polaritons, SSPPs)和交指电容结构的双通带滤波器. 首先, 在共面波导传输线上引入了沙漏形SSPP单元结构和交指电容结构, 以获得高分数带宽、低插损的通带特性. 然后, 通过加载交指电容环路谐振器激发陷波, 形成双通带滤波器. 仿真结果表明, 所提出的双通带滤波器具有良好的上边带抑制和双通带滤波性能. 两个通带的相对带宽分别为46.8%(1.49—2.40 GHz)和15.1%(2.98—3.63 GHz), 可在4.77—7.48 GHz的范围内实现超过–40 dB的抑制, 且可通过改变相应的结构参数独立调控两个通带的上、下截止频率. 为深入了解双通带滤波器的工作原理, 给出了相应的色散曲线和电场分布、LC等效电路分析. 最后, 根据优化后参数数值, 加工出滤波器原型实物. 实验结果与仿真结果吻合良好, 由此表明提出的双通带滤波器在微波频率的集成电路应用中具有重要意义.In this paper, a dual passband filter with spoof surface plasmon polaritons (SSPPs) and interdigital capacitance structure loaded on a coplanar waveguide (CPW) is proposed. First, the hourglass-shaped SSPP unit-cell structure and the interdigital capacitor structure are introduced on the coplanar waveguide transmission line to obtain high fractional bandwidth and low insertion loss passband characteristics. Then, a dual passband filter is formed by loading the interdigital capacitor loop resonator to excite the trapped waves. The simulation results show that the proposed dual passband filter has excellent upper sideband rejection and dual passband filtering performance. The fractional bandwidths of the two passbands of the design are 46.8% (1.49–2.40 GHz) and 15.1% (2.98–3.63 GHz), respectively, which can achieve more than –40 dB rejection in a range of 4.77–7.48 GHz. The upper cutoff frequency and lower cutoff frequency of the two passbands can be independently regulated by changing the structural parameters of the proposed filter. In order to gain a more in-depth understanding of the operating principle of the dual passband filter, the corresponding dispersion curves and electric field distribution, LC equivalent circuit analysis are given. Finally, the prototype of the designed filter is fabricated according to the optimized parameter values. The experimental results are in good agreement with the simulation ones, indicating that the proposed dual-passband filter is of great importance in implementing microwave integrated circuits .
-
Keywords:
- dual-bandpass filter /
- spoof surface plasmon polaritons /
- interdigital capacitance structure
[1] Zhang R, Zhu L 2013 IEEE Trans. Microwave Theory Tech. 61 1820Google Scholar
[2] Gomez-Garcia R, Yang L, Munoz-Ferreras J M, Psychogiou D 2019 IEEE Microw. Wireless Compon. Lett. 29 453
[3] Mansour R R, Laforge P D 2016 IEEE MTT-S International Microwave Symposium San Francisco, May 22–27, 2016 p1
[4] Qu L L, Zhang Y H, Li Q, Liu J W, Fan Y 2020 International Conference on Microwave and Millimeter Wave Technology Shanghai, September 20–23, 2020 p1
[5] Amari S, Bekheit M 2008 IEEE Trans. Microwave Theory Tech. 56 1938Google Scholar
[6] Nocella V, Pelliccia L, Tomassoni C, Sorrentino R 2016 IEEE Microw. Wireless Compon. Lett. 26 310Google Scholar
[7] Bartlett C, Hoft M 2021 Electron. Lett. 57 328Google Scholar
[8] Li K, Kang G Q, Liu H, Zhao Z Y 2020 Microsyst. Technol. 26 913Google Scholar
[9] Duarte G, Silva A, Oliveira C, Dmitriev V, Melo G, Castro W 2021 IEEE MTT-S International Microwave and Optoelectronics Conference Fortaleza, October 24–27, 2021 p1
[10] Miek D, Boe P, Kamrath F, Hoft M 2021 IEEE MTT-S International Microwave Filter Workshop Perugia, November 17–19, 2021 p73
[11] Litvintsev S, Rozenko S 2021 IEEE 3rd Ukraine Conference on Electrical and Computer Engineering Lviv, August 26–28, 2021 p121
[12] Li D, Wang J A, Liu Y, Chen Z 2020 IEEE Access 8 25588Google Scholar
[13] 张德伟, 王树兴, 刘庆, 周东方, 张毅, 吕大龙, 吴瑛 2018 电子学报 46 387Google Scholar
Zhang D W, Wang S X, Liu Q, Zhou D F, Zhang Y, Lv D L, Wu Y 2018 Chin. J. Electron. 46 387Google Scholar
[14] Chen R S, Zhu L, Lin J Y, Wong S W, He Y 2020 IEEE Microw. Wireless Compon. Lett. 30 573Google Scholar
[15] 朱登玮, 曾瑞敏, 唐泽恬, 丁召, 杨晨 2020 激光与光电子学进展 57 172401Google Scholar
Zhu D W, Zeng R M, Tang Z T, Ding Z, Yang C 2020 Laser Optoelectron. Prog. 57 172401Google Scholar
[16] 石光明, 马震远, 麦智荣, 林智勇 2020 电子学报 48 1641Google Scholar
Shi G M, Ma Z Y, Mai Z Y, Lin Z Y 2020 Chin. J. Electron. 48 1641Google Scholar
[17] 苏林, 马力, 孙炳文, 郭圣明 2014 物理学报 10 104302Google Scholar
Su L, Ma L, Sun B W, Guo S M 2014 Acta Phys. Sin. 10 104302Google Scholar
[18] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳 2015 物理学报 10 108402Google Scholar
Sheng S W, Li K, Kong F M, Yue Q Y, Zhuang H W, Zhao J 2015 Acta Phys. Sin. 10 108402Google Scholar
[19] Jaiswal R K, Pandit N, Pathak N P 2019 IEEE Photon. Technol. Lett. 31 1293Google Scholar
[20] Feng W, Feng Y, Yang W, Che W, Xue Q 2019 IEEE Trans. Plasma Sci. 47 2832Google Scholar
[21] 吴梦, 梁西银, 颜昌林, 祁云平 2019 激光与光电子学进展 56 202417Google Scholar
Meng W, Liang X Y, Yan C L, Qi Y P 2019 Laser Optoelectron. Prog. 56 202417Google Scholar
[22] Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M, Zhuang S L 2019 Front Inform. Tech. El. 20 591Google Scholar
[23] Shang H, Liu Y, Li Z, Tian Y 2020 Int. J. RF Microw. C. E. 32 e22440
[24] Wang Z X, Zhang H C, Lu J, Xu P, Wu L W, Wu R Y, Cui T J 2018 J. Phys. D Appl. Phys. 52 025107Google Scholar
[25] Chen Z M, Liu Y H, Wang J, Li Y, Zhu J H, Jiang W, Shen X P, Zhao L, Cui T J 2019 IEEE Access 8 4311Google Scholar
[26] Yan S, Wang J, Kong X, Xu R, Chen Z M, Ma J Y, Zhao L 2022 IEEE Photonics Technol. Lett. 34 375Google Scholar
[27] Peng Y, Zhang W X 2010 Microw. Opt. Techn. Lett. 52 166Google Scholar
[28] Luo Y X, Yu J W, Cheng Y Z, Chen F, Luo H 2022 Appl. Phys. A 128 1Google Scholar
[29] Sun S P, Cheng Y Z, Luo H, Chen F, Li X C 2022 Plasmonics 18 165Google Scholar
-
图 8 不同 (a) SSPPs单元高度a, (b) SSPPs单元宽度b, (c)IDCLLRs的指长lr和(d) SSPPs单元交指电容结构间隙宽度s的模拟传输系数.
Fig. 8. Simulated transmission coefficients with different (a) SSPPs unit-cell heights a, (b) SSPPs unit-cell widths b, (c) finger lengths lr of IDCLLRs, and (d) SSPPs unit-cell interdigital structure gap widths s.
表 1 拟议的双通带滤波器的尺寸参数
Table 1. Dimensional parameters of the proposed dual-bandpass filter.
参数 w1 w2 w3 g g1 g2 a b c 值/mm 3.0 14.9 60.0 0.1 0.1 0.3 4.1 7.5 14.5 参数 l w s ls lr lw lx ly lz 值/mm 1.5 0.2 0.2 0.1 3.0 0.1 7.8 2.3 1.0 表 2 仿真与测试数据的对比
Table 2. Simulation versus measured data.
f0/GHz ILMAX/dB RLMAX/dB FBW/% 带外抑制 仿真(Sim.) 1.95/3.31 –1.25/–1.20 –14.3/–10.8 46.7/19.6 –40 dB@ 4.77—7.48 GHz 测量(Mea.) 2.01/3.15 –1.31/–2.50 –14.1/–11.1 51.7/19.0 –35 dB@ 4.30—7.70 GHz 表 3 先进的双通带滤波器对比
Table 3. State-of-the-art dual-bandpass filter comparison.
参考文献 f0/GHz IL/dB FBW/% 带外抑制 是否可调 [2] 1.57/2.38 1.2/2.0 9.9/6.5 –30 dB@ 2.6—5.1 GHz 否 [4] 4.16/7.22 0.4/0.7 48.1/34.9 –20 dB@ 8.6—9.0 GHz 否 [8] 2.30/3.20 1.1/1.7 11.3/9.4 –20 dB@ 3.4—4.0 GHz 是 [12] 2.40/5.20 0.4/1.0 10.6/13.5 –15 dB@ 5.8—12.4 GHz 否 [14] 0.19/0.27 1.75/1.1 1.6/2.1 –25 dB@ 0.27—0.33 GHz 是 本文工作 2.01/3.15 1.3/2.5 51.7/19.0 –35 dB@ 4.3—7.7 GHz 是 -
[1] Zhang R, Zhu L 2013 IEEE Trans. Microwave Theory Tech. 61 1820Google Scholar
[2] Gomez-Garcia R, Yang L, Munoz-Ferreras J M, Psychogiou D 2019 IEEE Microw. Wireless Compon. Lett. 29 453
[3] Mansour R R, Laforge P D 2016 IEEE MTT-S International Microwave Symposium San Francisco, May 22–27, 2016 p1
[4] Qu L L, Zhang Y H, Li Q, Liu J W, Fan Y 2020 International Conference on Microwave and Millimeter Wave Technology Shanghai, September 20–23, 2020 p1
[5] Amari S, Bekheit M 2008 IEEE Trans. Microwave Theory Tech. 56 1938Google Scholar
[6] Nocella V, Pelliccia L, Tomassoni C, Sorrentino R 2016 IEEE Microw. Wireless Compon. Lett. 26 310Google Scholar
[7] Bartlett C, Hoft M 2021 Electron. Lett. 57 328Google Scholar
[8] Li K, Kang G Q, Liu H, Zhao Z Y 2020 Microsyst. Technol. 26 913Google Scholar
[9] Duarte G, Silva A, Oliveira C, Dmitriev V, Melo G, Castro W 2021 IEEE MTT-S International Microwave and Optoelectronics Conference Fortaleza, October 24–27, 2021 p1
[10] Miek D, Boe P, Kamrath F, Hoft M 2021 IEEE MTT-S International Microwave Filter Workshop Perugia, November 17–19, 2021 p73
[11] Litvintsev S, Rozenko S 2021 IEEE 3rd Ukraine Conference on Electrical and Computer Engineering Lviv, August 26–28, 2021 p121
[12] Li D, Wang J A, Liu Y, Chen Z 2020 IEEE Access 8 25588Google Scholar
[13] 张德伟, 王树兴, 刘庆, 周东方, 张毅, 吕大龙, 吴瑛 2018 电子学报 46 387Google Scholar
Zhang D W, Wang S X, Liu Q, Zhou D F, Zhang Y, Lv D L, Wu Y 2018 Chin. J. Electron. 46 387Google Scholar
[14] Chen R S, Zhu L, Lin J Y, Wong S W, He Y 2020 IEEE Microw. Wireless Compon. Lett. 30 573Google Scholar
[15] 朱登玮, 曾瑞敏, 唐泽恬, 丁召, 杨晨 2020 激光与光电子学进展 57 172401Google Scholar
Zhu D W, Zeng R M, Tang Z T, Ding Z, Yang C 2020 Laser Optoelectron. Prog. 57 172401Google Scholar
[16] 石光明, 马震远, 麦智荣, 林智勇 2020 电子学报 48 1641Google Scholar
Shi G M, Ma Z Y, Mai Z Y, Lin Z Y 2020 Chin. J. Electron. 48 1641Google Scholar
[17] 苏林, 马力, 孙炳文, 郭圣明 2014 物理学报 10 104302Google Scholar
Su L, Ma L, Sun B W, Guo S M 2014 Acta Phys. Sin. 10 104302Google Scholar
[18] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳 2015 物理学报 10 108402Google Scholar
Sheng S W, Li K, Kong F M, Yue Q Y, Zhuang H W, Zhao J 2015 Acta Phys. Sin. 10 108402Google Scholar
[19] Jaiswal R K, Pandit N, Pathak N P 2019 IEEE Photon. Technol. Lett. 31 1293Google Scholar
[20] Feng W, Feng Y, Yang W, Che W, Xue Q 2019 IEEE Trans. Plasma Sci. 47 2832Google Scholar
[21] 吴梦, 梁西银, 颜昌林, 祁云平 2019 激光与光电子学进展 56 202417Google Scholar
Meng W, Liang X Y, Yan C L, Qi Y P 2019 Laser Optoelectron. Prog. 56 202417Google Scholar
[22] Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M, Zhuang S L 2019 Front Inform. Tech. El. 20 591Google Scholar
[23] Shang H, Liu Y, Li Z, Tian Y 2020 Int. J. RF Microw. C. E. 32 e22440
[24] Wang Z X, Zhang H C, Lu J, Xu P, Wu L W, Wu R Y, Cui T J 2018 J. Phys. D Appl. Phys. 52 025107Google Scholar
[25] Chen Z M, Liu Y H, Wang J, Li Y, Zhu J H, Jiang W, Shen X P, Zhao L, Cui T J 2019 IEEE Access 8 4311Google Scholar
[26] Yan S, Wang J, Kong X, Xu R, Chen Z M, Ma J Y, Zhao L 2022 IEEE Photonics Technol. Lett. 34 375Google Scholar
[27] Peng Y, Zhang W X 2010 Microw. Opt. Techn. Lett. 52 166Google Scholar
[28] Luo Y X, Yu J W, Cheng Y Z, Chen F, Luo H 2022 Appl. Phys. A 128 1Google Scholar
[29] Sun S P, Cheng Y Z, Luo H, Chen F, Li X C 2022 Plasmonics 18 165Google Scholar
计量
- 文章访问数: 5220
- PDF下载量: 118
- 被引次数: 0